Engineering Design Handbook:
Development Guide for Reliability. Part Three. Reliability Prediction

Army Materiel Command Alexandria Va

is
 \bigcirc
 -
 N
 3 ENGINEERING DESIGN HANDBOOK

DEVELOPMENT GUHOE

 DDC FOR RELIABILITY PART THREE rellablity predition

```
DLSTRBUMON STANCKENT I
Approved for public relcasot Distributipa Unlimitel
```


TABLE OF CONTENTS

Paramphiph Page
3-2.3 Rules, Laws, and D_rinitions for Probaibility Densities 3-2
3-2.4 Transormation of Variables $3-3$
3.2.5 Convolution 3-3
33 -Independence and Conditional o-Independence 3-3
3-4 Distributions 33
3-4.1 Moments 3-3
3-4.2 Dietributions and Their Properties 3-5
CHAPTER 4. REVIEW OF ELEMENTARY STATISTICAL THEORY
41 Introduction $4-1$
42 Estimation of Parameters 4-1
42.1 -Efficient Estimator 4.1
4.2.2 \quad-Consistent Estimators $4-1$
$42.3 \quad$-Bis 4-1
4-2.4 Uncertainty 4-2
4.3 Tests of s-Significance 4-2
4-4 s-Confidence Statements $4-2$
$4-5$ Goodness-of. Fit Test 4.3
4-6 Samples and Popuiations $4-3$
4 IFR and DFR Distributions 4-3
CHAPTER 5. SOME ADVANCED MATHEMATICAL TECHNIQUES
5-0 List of Symbols 5-1
5-1 Introduction $5 \cdot 1$
5-2 Markov Fiocesses 5-1
5-2.1 System State 5.1
5-2.2 Markov Chains 5.1
5-3 Laplace Trawsorms 5-1
5-4 Regeneration Points 5-2
CHAPTER 6. CREATING THE SYSTEM R_{1} : BILIT Y MODEL
6-0 List of Symbols 6.1
6-1 Introduction 6.1
6-2 Engineering Analysis 6. 5
6-2.1 Introduction s
6-2.2 Functional Block Diagram 5
6-2.2.1 Discrete Systems $\hat{0}:$
6-2.2.2 Dispersed Systems 6.3
6-2.3 Dependency Diagrams 6.
6-2.3.1 Definition of Terms 6.4
6-2.3.2 Standard Formatting Rules 6-4
62.3.3 Examples 6-12
6-3 Development of Reliability Mcdels 6-20
6-3.1 Introduction 6.20
6-3.2 Definitions 6-20

TABLE OF CONTENTS

Paragraph Page
6-3.3 Derivation of a Reiiability Diagram 6.23
6-3.4 Mathematical Derivation of a Reliability Diagram 6.27
6-3.4.1 Basic Concepts 6.27
6-3.4.2 A Complex Example 6-28
6-3.4.3 Reliability Models for Maintained Systems 6-32
6-3.4.3.1 Example No. 1 (Fig. 6-29: 6-32
6-3.4.3.2 Example No. 2 (Fig. 6-24) 6-34
6-4 Other Hodels 634
CHAPTER 7. KINDS OF FEDUNDANCY AND REPAIR
7-1 Introduction $7-1$
7-2 Knowledge oi System State 7.1
7.3 System Level for Redunciancy Application 7.2
74 Method of Switching 7-2
7-5 Failure Behavior of Spares and Other Parts 7.3
7-6 Styles of Redundancy $7-3$
7.6.1 k-Out-of-n-Systems $7-4$
7-6.2 Voting Techniques 7-4
76.3 Other Systems 74
CHAPTER 8. RELIABILITY PREDICTION(PASSIVE REDUNDANCY, PERFECT SWITCHING)
8-1 Introduction 8-1
8-2 $\quad k$-Out-of-n-Systems 8-1
8.3 Combinations of Series-Parallel Elements 8-2
8-4 Event Analysis 8-2
8-5 Cut Sets 8-4
8-6 Majority Voting 8-5
CHAPTER 9. RELIABILITY PREDICTION (TIME DEPENDENT)
9-0 List of Symbols 9-1
9-1 Introduction 9.1
9-2 \quad Measures of Reliability 9-1
9-3 The Exponential Distribution 9-1
9-3.1 Reliability Improvement 9-2
9-3.2 Redundancy Versus Improved Elements 9-2
9-4 The s-Normal Distribution 9.3
9-5 Other Configurations 9-3
9.6 s-Dependent Failure Probabilities 9-7
9.7 Standby Redundancy 9.9
9.7.1 Switching Failures 9-10
9-7.2 Optimum Design: General Model 9-10
9-8 Active Versus Standby Redundancy $9-12$
9-9 Maintenance Considerations 9-12
9-9.1 Periodic Maintenance 9.13
9-9.2 Corrective Maintenance 9.15

TABLE OF CONTENTS

Peragraph Pap
CHAPTER 10. RELLABILTTY PREDICTION (GENERAL)
100 List of Symbok 10-1
10-1 Introduction 10-1
10-2 Nondecision Redundancy $10-2$
10-2.1 Mnore-Shannon Redundancy 10-2
10-2.2 Single Mode Stries-Parallel Redundancy 10-5
10-2.3 Single Mode Binomial Redundancy ($k-\mathrm{O}_{\mathrm{ut}} \mathrm{t} \boldsymbol{0} \mathrm{f}-\mathrm{n}$) 10-5
10-2.4 Bimodal Series-Parallel Redundancy $10-5$
10-2.5 Summary Table 10-7
10-3 Decision-Without-Switching Redundancy $10-7$
10-3.1 Majority Logic Redundancy $10-7$
10-3.2 Multiple Live Redundancy 10-11
10-3.3 Gate-Connector Redundancy 10-12
10-3.4 Coding Redundancy 10-14
10-4 Decision-With-Switching Redundancy 10-15
10-4.1 Standby Redundancy 10-15
10-4.2 Operating Redundancy 10-16
10-4.3 Duplex Redundancy 10-19
CHAPTER 11. MONTE CARLO SIMULATION
110 List of Symbols 11-1
11.1 Introduction 11-1
11-2 Properties of Distributions 11-1
11-3 The Simulation Method $11-2$
11-4 N_{k} asures of Uncertainty $11-2$
11.5 Applications 11-3
CHAPTER 12. RELLABILITY OPTIMIZATION
12-0 List of Symbols 12-1
12-1 Introduction 12-1
12-2 Numerical Methods for Finding Unconstrained Minima 12-2
12-2.1 Gradient Methods 12-2
12-2.1.1 Steepest Descent 12-2
12-2.1.2 Cubic and Quadratic Interpolation 12.2
12-2.1.3 Numerical Difficulties 12-4
12-2.2 Second-Order Gradient Methods 124
12-2.2.1 Conjugate Directions 12.5
12-2.2.2 The Fletcher-Powell Method 12-5
12.3 Constrained Optimization Problems $12-6$
12-3.1 Nonlinear Constraints 12.6
12-3.2 Convexity $12-9$
12-3.3 Mixed Problems 12-11
12-3.4 The Kuhn-Tucker Conditions 12-11
12-3.5 Methods of Feasible Directions $.12-15$
12-3.5.1 Zoutendijk's Procedure 12-15

LIST OF ILLUSTRATIONS

Figure Page
2-1 Example Event Relationships for 2 Events $2-2$
2-2 Example Event Relationship for 4 Events 2.3
3-1 Venn Diagrams Showing Set Relationships 3-2
6-1 Raxlio Receiver Functional Block Diagram 6.3
6-2 Infrured Camera Functional Block Diagram 6.4
6-3 Functional Diagram of the MBT-70 Tank 6-5
6-4 Tropospheric Scatter System Layout Plan 6.6
6-5 Equipinent Functional Diagram for Tropo Terminal, Station X 6.7
6-6 Simple Series Dependency 6.9
6-7 Identical Electrical Signals, Same Terminal, AND Dependency 6-10
6-8 Identical Electrical Signals, Different Terminal, AND D Dependency 6-10
6-9 Different Electrical Signals, Same Terminal, AND Dependency 6-11
6-10 Different Physical Terminals, Electrically Different Signals, AND Dependency 6.11
6-11 Large Numbers of Functional Branches in Parallel 6-13
6-12 Power Supply Section of Tropospheric Scatter System Receive Function 6-14
6-13 Dependency Chart for Tropospheric Scatter System 6-17
6-14 Functional Diagram of a Relay 6-20
6-15 Relay Dependency Diagram 6-21
6-16 Packaged Speed Reducer 6.21
6-17 Packaged Speed Reducer Dependency Diagram 6.22
6-18 Reliability Diagram, Tropospheric Scatter System Receive Mode, Full Polarization and Degraded Space Diversity 6.25
6-19 Simple Dependency Chart 6-27
6-20 Simple Reliability Model 6.28
6-21 Tropospheric Scatter System Parallel Items 6.29
6-22 Boolean Tree 6.32
6-23 System for Example No. 1 6-33
6-24 System for E. mple No. 2 6-34
8.1 Logic Diagrams tor Example No. 1 8 -3
8-2 Physical Diagram for Example No. 2 8.5
9-1 Reliability Function for Systems with M/Identical, Active, Parallel Elements, Each with Constant Falure Rate λ (1-out-of-m:G). 9-2
9.2 Survivor Functions for Two Particular Systems with the Same MTF 9.3
9.3 Illustrative System 9.7
9.4 System with Load Dependent Failure 9.8
9.5 Time Sequence Dragram 9.8
9-6 s-Relability Functions for Redundant Conflguration (Depend. ent Model) and Nonredundant Configurations $9-9$
9.7 Time Sequence Diagram for Standby Redundancy 9.9
9.8 Misson Reliability for n Redundant Paths, Case 13. When $R_{1}(t)=0.80(T=0.223) \lambda_{2} \lambda=0001$ 9-13

LIST OF ILLUSTRATIONS

Figexis
Page
9.9 Missior, Reliability for n Redundant Path, Case 13, When $R_{1}(t)=0.80(\tau=0.223) \lambda_{m} \lambda=0.001$ 9.13:
9-10 s-Reliability Functions for Active-parallel Configunation, Case 14, on Which Maintenance lestored to Like-new is Per- formed Every T Hours 115
9-11 Comparison of s-Reliability Functions for Three Maintenance Situations Cases 15, 16, and 17 9.16
10.1 Redundancy Tree Structure $111 / 2$
10-2 Relay Networks Illustrating Moore-Shannon Redundancy 1 ll .3
10-3 8 -Reliability Functions for Redundant Relay Networks 10.4
10-4 Single Mode Series-parallel Redundant Structures $10 . t$
10-5 Reliability Block Diagram for a Single Mode Series-parallel Redundant Structure 10-5
10-6 Schematic Diagram of a Diode and Transistor Quad Bridge Network Illustrating Bimodal Series-parallel Redundancy 10-6
10.7 Reliability Block Diagram of a Diode and Transisior Quad Bridge Network $10-6$
10-8 Basic Majority Vote Redundant Circuit 10.7
10-9 Majority Vote Redundant Circuit With Multiple Majority 'Jote Taker 10.9
10-10 Reliability Block Diagram for Circuit With Threefold Majority Logic 10-10
10-11 Order-three Multiple Line Redundant Network 10.11
10-12 A Coherent System 10-11
10-13 Circuit Illustrating Gate-connector Redundancy 10-12
10-14 Gate Unit 10-13
10-15 Two Models for a Noise AND Gate 10-14
10-16 System Illustrating Standby Redundancy 10-16
10-17 System of m Redundant Chains Illustrating Operating Redundancy 10.17
10-18 Failure Diagram of a Chain 10.18
10-19 Illustration of Duplex Redundancy $10-20$
11-1 Sample CDF's for the E:rmple (s-Normai Distribution Paper) 11.6
12.1 Finding the Minimum Using the Steepest Descent Method 12.5
12.2 Comparison of Fletcher-Powell and Optimum Gradient Tech- niques for Minimizing a Difficult Function 12.7
12-3 Constraint Set 12.8
12-4 Nonlinear Programming Problem With Constrained Minimum 12.8
12-5 Nonlinear Programming Problem With Objective Function In- side the Constraint Set 12.8
12-6 Local Minimum 12.9
12.7 Local Minima Due to Curved Constraints 12.9
12.8 Convex and Nonconvex Sets 12-10
12.9 Concave and Convex Functions 12-10
12-10 Convex Cone $1^{1} \cdot 13$
12-11 Nonlinear Program Illustrating the Use of a Cone $12 \cdot 4$
1212 Constrained Minimization With Usable, Feasible Directions 12-16
12-13 An Inefficient Search Procedure 12-17

LIST OF ILLUSTRATIONS

Figure13-1 Simple Circuit for MARSEP Analysis13-3
13-2 MARSEP Model of Simple Circuit 13-5
13.3 GEM Program System Organization 13-10
13-4 Inturrelation of GEM Environmental Vector Definitions and Overall Systen: Effectiveness 13-11
13-5 GEM Input/Out, rut Diagram 13-13
13-6 Sample System for GEM Enalysis 13-16
13-7 GEM Diagram for Sample System 13.16
13-8 GEM System Detinition Language Coding Form 13-21

LIST OF TABLES

Table Page
2-1 Sample Space for Example 2.6
2-2 Sample Space for Modified Example 2-7
2-3 Calculations to Show Dvents A_{F} and B_{F} Are Conditionally s-Independent 2.8
2.4 Common Moae (Cuase) Failure Calculations $2-9$
2-5 Discrete Distributions $2-10$
3-1 Distributions 3-4
8-1 States of Capacitor Network in Fig. 8-2 8-6
9-1 Ratios of MTF's for m Active-parallel Elements 9.2
9-2 Reliability Functions for Various Active-parallel (1-out- of $-n: G)$ Configurations $9-4$
9-3 Effect of Redundancy, Case 13 $9-12$
10-1 Component Redundancy $10-8$
10-2 Approximate Failure Probabilities for Majority Logic Redundancy $10-9$
11-1 Minimum Sample Size Required for Monte Carlo Simulation. $11-2$
11-2 Summary of Subsystem Operating Times, Failures, Failure- Rate Estimates and s-Confidence Interv: for Failure Rates 11.3
11.3 System Failure Behavior $11-4$
11-4 Random Numbers From the Chi-square Distribution With 4 Degrees of Freedom 11-4
11-5 Monte Carlo Analysis of Example System 11.5
12-1 Optimizing Unconstrained Problems 12.3
12-2 Optimizing Constrained Problems 12-12
13-1 MARSEP Modeling Symbols 13 -2
13-2 Assignment of P Names to Simple Circuit Model $13-4$
13-3 MARSEP Modeling Language 13-6
13-4 MARSEP Developed Success Expressions for Simple Circuit 13.8
13-5 System Description in GEM System Definition Language 13.17
13-6 GEM System Definition Language Formula Symbols 13.18
13-7 Formulas Associated With 3 Section $13-20$

LIST OF TABLES

Table Page
2-1 Sample Space for Example 2-6
2-2 Sample Space for Modified Example 2-7
2.3 Calculations to Show Events A_{F} and B_{F} Are Conditionally s-Independent 2.8
2-4 Common Moae (Cause) Failure Calculations 2.9
2-5 Discrete Distributions 2-10
3-1 Distributions 3-4
8-1 States of Capacitor Network in Fig. 8-2 8-6
9.1 Ratios of MTF's for m Active-parallel Elements 9-2
9-2 Reliability Functions for Various Active-parallel (1-out- of $-n: G)$ Configurations 9.4
9-3 Effect of Redundancy, Case 13 $9-12$
10-1 Component Redundancy 10.8
10-2 Approximate Failure Probabilities for Majority Logic Redundancy 10.9
11-1 Minimum Sample Size Required for Monte Carlo Simulation. 11.2
11-2 Summary of Subsystem Operating Times, Failures, Failure- Rate Estimates and s-Confidence Interv: for Failure Rates $11-3$
11.3 System Failure Behavior $11-4$
11-4 Random Numbers From the Chi-square Distribution With 4 Degrees of Freedom $11-4$
11.5 Monte Carlo Analysis of Example System $11-5$
12.1 Optimizing Unconstrained Problems $12 \cdot 3$
12-2 Optimizing Constrained Problems 12-12
13-1 MARSEP Modeling Symbols 13-2
13-2 Assignment of P Names to Simple Circuit Model 13-4
13-3 MARSEP Modeling Language 13-6
13.4 MARSEP Developed Success Expressions for Simple Circuit 13.8
13.5 System Description in GEM System Definition Language 13-17
13.6 GEM System Definition Language Formula Symbols 13-18
13-7 Formulas Associated With a Section 13-20

Classified documents may be released on a "Need to Know" basis verified by an official Depariment of Army representative and processed from Defense Documentation Center (DDC), ATTN: DDC-TSR, Cameron Station, Alexandria, VA 22314.

Comments and suggestions in this handbook are welcome and should be addressed to:

Commander
US Army Materiel Development and Readiness Command Alexandria, VA 22333
(DA Forms 2028, Recommended Changes to Publications, which are available through normal publications supply channels, may be used for comments/suggestions.)

CHAPTER 1 INTRODUCTION

This handbook reviews the basic ideas and formulas in probatility and statistics and shows the kinds of models that might be useful for the reliability of systems. The concept of s-independence is discused very thoroughly since it is so important in reliability improvements wrought by redundancy.

A large portion of the handbook deals with the effects of redundancy, simply because the calculation of reliability for nonredundant systems is so straightforward (although often tedious). The distinction between redundancy and repair is blurred in practice, especially when a failed unit is replaced by a good inactive unit.

Soune of the techniques are presented only is, their basic form. References are given for furiter study. Often the designer and reliabulty engineer will have better things to do than study sophisticated mathematics. It is usually setter to find a person already trained in the subject who can then solve the specialized rioblems. In thme cases the function of this trandbook is to provide the designer and reliabulity engineer with
(I) wasic knc.wledge; so they can converse intelligently with the experts, and
(2i rerspective; so they know when to call an expert.
In dealing with mathematics it is important always to remember what mathematics is, and what it isn't. Mathematics per se is rules and relationships between abstract concepts. It is always "true" in the sense that it is correct (assuming no rules were violated), but all mathematics is not applicable to everything. It is in applying mathematics to a problem that we get in trouble. We have to choose what kind of mathematics to use, and then to choose what real-world things will be represented by what mathematical concepts. For example, is a particular material adequately representable by elastic, viscoelastic, or viscous equations? Or, is a physical coil of wire representable by a lumped inductance in series with a resistance?

Probability theory is abstract mathematics that can usefully represent many situations. Much of this handbook shows how to represent things by probabilities and how to m7.
nipulate those probabilities.
There is little that is new in probability/ statistics for reliability. The Bibliography at the end of this chapter gives many references for those who need instruction in those topics. The books are labeled as Elementary, Intermediate, or Advanced. This handbook makes no attempt to rewrite all thowe books.

BIBLIOGRAPHY

Probability and Statistics Books

AMCP 706-110 through -114, Experimental Statistics, Sections 1-5, USGPO (Intermediate).
R. E. Barlow and F. Proechan, Mathematical Theory of Reliability, John Wiley \& Sons, Inc., N.Y., 1965 (Advanced).

Vic Barnett, Comparative Statistical Inference, John Wiley \& Sons, Inc., N.Y., 1973 (1975 corrected reprint), (Intermediate, Advanced).
A. M Breipohl, Prohabilistic Systems Analysis, john Wiley \& Sons, luc., N.Y., 1970 (Elementary, Intermediace).

DA Pam 70-5, Mathematics of Military Action, Operations and Systems (Elementary, Intermediate).
A. J. Duncan, Quality Controi ind Industrial Statistics, Richard D. Irwin, Inc., Homewood, II., 1965 (Elementary, Intermediate).
W. Feller, An Introduction to Protability Theory and Its Applications, Vols. I, II, John Wiley \& Sons, Inc., N.Y., Vol. I, 1957, Vol. II, 1966 (Advanced).
J. E. Freund, Modern Elementary Statistics. Prentice-Hall, Englewood Cliffs, N.J., 1967 (Llementary).

Gnedenko, Belyayev, and Solovyev, Mathematical Methods of Reliability Theory, Academic tress, N.Y., 1969 (Advanced).
P. Hoel, Intruduction to Mathematical Statistics, John Wiley \& Sons, inc., N.Y., 1962 (Elesuentary, Intermediate).

Mann. Schafer, and Singpurwalla. Methods for Statistical Analysis of Reliability and Life Data, John Wiley \& Sons. Inc., N.Y.. 1974 (Intermeuiate, Advanced)
I. Miller and J. E. Freund, Probability and Statistics for Engineers, Prentice-Hall, Englewood Cliffs, N.J., 1965 (Elementary).

NBS Handbook 91, Experimental Statistics, USGPO 1966 (Intermediate).
E. Parzen, Modern Probability Theory and Its Applications, John Wiley \& Sons, Inc., N.Y., 1960 (Intermediate, Advanced).
E. Parzen, Stochastic Processes, Holden-Day, Inc., San Francisco, 1962 (Advanced).
M. L. Shooman, Probabilistic Reliability, McGraw-Hill, N.Y., 1968 (Elementary, Intermediate).

Many of the early reliability texts, and some of the more recent ones which are not mentioned here, have an inadequate or poor introduction to probability and statistics. Most probability/statistics texts are quite adequate.

CHAPTER 2 - REVIEW OF ELEMENTARY PROBABILITY THEORY (DISCRETE)

2-0 LIST OF SYMBOLS

$$
\begin{aligned}
A_{,}, B_{,} E= & \text { sets } \\
A_{F}, A_{G}, B_{F}, B_{G}= & \text { events that units } U_{A} \text { and } \\
& U_{B} \text { ise Failed or Good } \\
A_{i}, B_{i}, C_{i} E_{1}= & \text { subsets of } A, B, C, \bar{D}, E \\
E\}= & \text { s-expected value of } \\
E_{B}, E_{H T}, E_{E T}= & \text { events of Benign, High Tem- } \\
& \text { perature, Electrical Tran- } \\
& \text { sient environments } \\
E_{L}, E_{S}= & \text { events of Light and Severe } \\
& \text { environments } \\
M_{i}= & \text { ith central moment } \\
N_{A}, N_{B}, N_{E}= & \text { number of subsets in } A, B, E \\
p m f= & \text { probability mass function } \\
P r\}= & \text { probability of } \\
\delta= & \text { denotes statistical definition } \\
\mu= & \text { mean } \\
\sigma= & \text { standard deviation } \\
\sigma^{2}= & \text { variance } \\
\Omega= & \text { compleie sample space } \\
\Phi= & \text { null event } \\
U= & \text { union } \\
\cap= & \text { intersection }
\end{aligned}
$$

2-1 INTRODUCTION

The question always arises "What is probability?" Some say it is relative frequency; others say it is degree-of-belief; and still others have different concepts. In many good reliability and engineering textbouks (and virtually all mathematical books) probabilities are mathematical concepts which can then be applied to such things as relative frequency and degree-of-belief. The situation is analogous to plane geometry. Plane geometry is a mathematical theory that uses concepts such as point and line. The theory is true (consistent) regardless of what a point or line is taken to be. Plane geometry often is applied successfully to many reasonably flat things in everyday life, and we associate point and line with the everyday concepts.

Piobability and statistics are related very closely to each other. The difference between them is not clear to many engineers. Probability theory usually considers the parameters of a general problem as known, then computes numbers (probatilities) about particular 'ets of events. It goes from the general to the
particular. Statistics on the other hand treats actual data and tries to decide what useful things can be done with them and how to get them. It goes from the particular to the general. A statistic is a number obtained from a sample or obtained from manipulating other statistics. In engineering problems one usually uses a mixture of probability and statistics; there is little to be gained in debating which calculations are probabilistic and which are statistical.

2.2 BASIC PROBABILITY RULES

2-2.1 SAMPLE SPACE, SAMPLE POINT, EVENT

These are basic concepts for any probability problem. The sample space is made up of all the sample points. An event is a collection of sample points; it can contain as few sample points as none, or as many as all. The concepts are best illustrated by examples. See the Bibliography in Chapter 1 for books which can explain the concepts.

Example 1. For one throw of a single die, the sample space is the set of numbers $1,2,3$, $4,5,6$; i.e., the sample space is all possible values that can arise. Each value is called a sample poin:. There are six sampie points in the samplr space for this example.

Every possible single outcome of an experiment is a sample point. The naming of every sample point is a first step in making a probabulistic nodel of any problem, although it often is done implicitly. Each sample point also has a proba'bility associated with it. The probability usually is assigned or calculated from known event-probabilities.

In the example of one throw of a single die, the probabilities usually are assigned by defining the die to be "fair"; i.e., each face has an equal probability of appearing. Then the probability assigned to each sample point is $1 / 6$. By definition, the sum of the probabilities for all sample points must be one.

Engineers who use probability often go astray because they do not understand sam-ple-space and assignment of probabilities to each sample point.

Example 2. A coin is to:sed three tiznes. What is the samplespace? Let t denote a tail and n a head. Then there are eight sample points in the sample space:

ttt	htt
tth	hth
tht	hht
thh	hhh

The event 'First toss is a head' has four sample points: htt, hth, hht, hhh. The event "'First toss is a head' \cap 'Last toss is a tail" has two sample points: htt, hht. The event 'First toss is neither a head nor a tail' has no sample points.

2-2.2 NOTATION AND DEFINITIONS

There is no universally accepted and used set of notation. Because the difficulties engineers have with probability are often basic in nature, a notation is selected which is not easily confused with something else, even though it is sometimes cumbersome. The notation and definitions are illusurated in Figs. 2-1 and 2-2.
$\boldsymbol{\Phi}$

- The null event; viz., the event contains no sample points.
$\Omega \quad$ The Ω^{2-2} plete sample space; viz., tr a event contains all the sample points.
$\cup \quad$ Union, and/or; e.g., AUB contains all sample points which are in A and/or in B. (Sometimes + is ised.
Intersection, both/and; e.g.,
$A \cap B$ containe only those sainple points which are in both A and B. (Sometimes X is used.)
Probability of the event (or sample point; contained in the \{ \};e.g..

$$
\begin{aligned}
\operatorname{Pr}\{a\}= & \text { probability of the } \\
& \text { sample point } a \\
\operatorname{Pr}\{4\}= & \text { probability of the } \\
& \text { event } A
\end{aligned}
$$

$\operatorname{Pr}\{\cdot \mid \cdot\} \quad$ Conditional probability; probability of the event to the left of the 1 , given that the event (condition) to the right of the \mid has occurred; e.g., $\operatorname{Pr}\{A \mid B\}$ is the conditional probability of event A, given that the event B has occurred.

$$
\begin{aligned}
& \operatorname{Pr}\{A \mid B\} \equiv \operatorname{Pr}\{A \cap B \forall \operatorname{Pr}\{B\} ; \\
& \operatorname{Pr}\{B\} \neq 0 .
\end{aligned}
$$

$\operatorname{Pr}\{A \mid B\}$ is meaningless (contradiction in terms)
if $\operatorname{Pr}\{B\}=0$.
mutually Two events are mutually exexclusive clusive if and only if they have no sample points in common; e.g., A and B are mutually ex. clusive if and only if $A \cap B=\Phi$.
exisaustive A set of events is exhaustive if and only if the union of the events contairs all sample points in the sample space; e.g., A, B, C are exhaustive if $A \cup B \cup C=\Omega$.
partitioning A set of events is a partition-

$\Omega \equiv 1$ through 23
$A \equiv 1$ through $5,7,12$
$B \equiv 5,6,8$ through 12
$C \equiv 8,9,12$ through 15,18 through 20 $D \equiv 22,23$

Examples of Set Relationships

```
A\capB = 5, 12
B\capC = 8, 9, 12
C\capA}=1
A\capB\capC=12
A\capD = }
B\capD = $
C\capD=$
```

\bar{A}	$=6,8$ through 11,13 through 23
\bar{B}	$=1$ through 4, 7,13 through 23
\bar{C}	$=1$ through $7,10,11,16,17$,
\bar{D}	21 through 23
$\bar{A} \cap D$	$=22,23$
$D \subset \bar{A}$	
$D \subset(\bar{A} \cap \bar{B})$	
$\bar{D} \cup(\bar{B} \cap C)$	$=13$ through 15, 18 through 20
$22 \in D$	

ing of the sample space if and only if the events are all mutually exclusive and the set is exhaustive. (The name comes from the way a set of partitions breaks up a room into smaller rooms, each of which is separate; but every part of the original room is in some smaller room.)

- Denotes the complement of an event; e.g., \bar{A} is the complement of A.
complement The complement of an event contains all the sample points in the sample space which are not in the event. A formal definition is $B=\bar{A}$ if and only if $A \cup B=\Omega$ and $A \cap B=\Phi$.
Beware of the comma, it is not ordinarily a defined symbol. Often intersection is meant, but one can't be sure.
$\operatorname{Pr}\{\because \cdot\} \quad$ Probability of the event to the left of the ";". The events or parameters to the right of the semicolon are known. The notation is often used for emphasis or as a reminder. It is similar to $\operatorname{Pr}\{\cdot \mid \cdot\}$ except that the event to the right of the " \mid " is a random one, whereas the event or parameters to the right of the ";" are certain (known exactly).
$\in \quad a \in B$ means that a is a sample point of B.
$C \quad A \subset B$ means that A is a subset of B; viz., all sample points of A are also in B, but all sample points of B need not be in A.

2-2.3 RULES, LAWS, AND DEFINITIONS FOR EVENTS

Let A, B, C be any events.

$$
\begin{align*}
& A \cup \bar{A}=\Omega \tag{2-1}\\
& A \cap \bar{A}=\Phi \tag{2-2}\\
& A \cup A=A \tag{2-3}\\
& A \cap A=A \tag{2.4}
\end{align*}
$$

$$
\begin{array}{lr}
A \cup B=B \cup A & (2-5) \\
A \cap B=B \cap A & (2-6) \\
A \cup(B \cup C)=(A \cup B) \cup C=A \cup B \cup C & (2-7) \\
A \cap(B \cap C)=(A \cap B) \cap C=A \cap B \cap C & (2-8) \\
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) & (2-9) \\
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) & (2-10) \\
(\overline{A \cup B})=\bar{A} \cap \bar{B} \\
(\overline{A \cap B})=\bar{A} \cup \bar{B} \tag{2-12}\\
& (2-11) \\
\text { 2-2.4 RULES, LAWS, AND DEFINITIONS } \\
\text { FOR PROBABILITIES }
\end{array}
$$

Let A, B, C be any events; and let
$A_{i}, i=1, \ldots, N_{A}$ be a partitioning of A. (The A_{i} are mutually exclusive and exhaustive.)
$B_{i}, i=1, \ldots, N_{B}$ be a partitioning of B. (The B_{i} are mutually exclusive and exhaus.ive.)
$a_{j}, j=1, \ldots, M$ be the sample points in A.
$E_{i}, i=1, \ldots, N_{E}$ be any N events.
$\operatorname{Pr}\{A\}=\sum_{i}^{M} \operatorname{Pr}\left\{a_{j}\right\}$
$0 \leqslant \operatorname{Pr}\{A\} \leqslant 1$
$\operatorname{Pr}\{\Phi\}=0$

$$
\begin{equation*}
\operatorname{Pr}\{\Omega\}=1 \tag{2-15}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Pr}\{A \cup B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}-\operatorname{Pr}\{A \cap B\} \tag{2-16}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{Pr}\{A \cup B \cup C\}= & \operatorname{Pr} \backslash A\}+\operatorname{Pr}\{B\}+\operatorname{Pr}\{C\} \tag{2-17}\\
& -\operatorname{Pr}\{A \cap B\}-\operatorname{Pr}\{B \cap C\} \\
& -\operatorname{Pr}\{C \cap A\}+\operatorname{Pr}\{A \cap B \cap C\} \tag{2-18}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Pr}\{A \mid B\}=\operatorname{Pr}\{A \cap B\} / \operatorname{Pr}\{B\} \text { for } \operatorname{Pr}\{B\} \neq 0 \tag{2.19}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{Pr}\left\{E_{1} \cup E_{2} \cup \cdots \cup E_{N_{E}}\right\}=\sum_{i=1}^{N_{E}} \operatorname{Pr}\left\{E_{1}\right\} \\
& -\sum_{i=1}^{N_{E}} \sum_{j=1}^{1-1} \operatorname{Pr}\left\{E_{i} \cap E_{j}\right\} \\
& +\sum_{i=1}^{N_{E}} \sum_{i=1}^{1-1} \sum_{k=1}^{1.1} \operatorname{Pr}\left\{E_{i} \cap F_{i} \cap E_{k}\right\} \\
& -\cdots \pm \operatorname{Pr}\left\{E_{1} \cap E_{2} \cap \cdots \cap E_{N}\right\} \tag{2.20}
\end{align*}
$$

The first term in Eq. 2-20 is an upper bound; adding terms in succession provides an alternating series of bounds which get increasingly better, until exactness is reached when all terms are used.

$$
\begin{equation*}
\operatorname{Pr}\{A \cap B\}=\operatorname{Pr}\{A \mid B\} \operatorname{Pr}\{B\}=\operatorname{Pr}\{B \mid A\} \operatorname{Pr}\{A\} \tag{2-21}
\end{equation*}
$$

Eq. $\mathbf{2 - 2 1}$ is a form of Bayes' Theorem.
$\operatorname{Pr}\{A \cap B \cap C\}=\operatorname{Pr}\{A \mid(B \cap C)\} \operatorname{Pr}\{B \mid C\} \operatorname{Pr}\{C\}$

$$
\begin{gather*}
\operatorname{Pr}\{A\}=\sum_{i=1}^{N_{A}} \operatorname{Pr}\left\{A_{i}\right\} \tag{2-23a}\\
\operatorname{Pr}\{A\}=\sum_{j=1}^{N_{B}} \operatorname{Pr}\left\{A \mid B_{j}\right\} \operatorname{Pr}\left\{B_{j}\right\} \tag{2-23b}\\
\operatorname{Pr}\left\{A_{i} \mid B\right\}=\frac{\operatorname{Pr}\left\{B \mid A_{i}\right\} \operatorname{Pr}\left\{A_{i}\right\}}{\sum_{j=1}^{N_{B}} \operatorname{Pr}\left\{B \mid A_{j}\right\} \operatorname{Pr}\left\{A_{j}\right\}}
\end{gather*}
$$

Eq. 2-24 is a form of Bayes' Theorem.

2.3 s -INDEPENDENCE

There are several equivalent definitions of s-independence. From an engineoring point of view, the most satisfactory definition is Eq. 2-25.
A and B are s-independent if and only if

$$
\begin{equation*}
\operatorname{Pr}\{A \mid B\}=\operatorname{Pr}\{A \mid \bar{B}\}=\operatorname{Pr}\{A\} . \tag{2-25}
\end{equation*}
$$

That is, the probability of A is the same regardless of whether we know that B has occurred, or has not occurred, or we do not know about B-- B just doesn't make any difference. There are several equations that are logically equivalent to Eq. 2-25, each implying the others. (The rocond equation in Eq. 2.25 actually is implied by the first one.) The most satisfactory definition from a statistical point of view is Eq. 2-26.
A and B are s-independent if and only if

$$
\begin{equation*}
\operatorname{Pr}\{A \cap B\}=\operatorname{Pr}\{A\} \operatorname{Pr}\{B\} . \tag{2-26}
\end{equation*}
$$

Eq. 2-26 is defined even for $\operatorname{Pr}\{B\}=0$ or 1 whereas Eq. $2-25$ is not. The extension to more than two events is easier wilh Eq. 2-26.
N events are s-independent if and only if for every intersection of events taken $2,3, \ldots$, N at a time, the probability of the intersection of thuse events is the product of the probabilities of the individual events. This can be a complicated concept; see the Bibliography at the end of Chapter 1 for a further discussion.

Example.

Suppose there are 2 units (from one population) in a subsystem and both must fail for the subsystem to fail. If the probability of failure of each is 0.200 and the probability of subsystem failure is $0.200 \times 0.200=0.0400$, then the failure events are s-independent. Even if the probability of subsystem failure were 0.0404 (e.g., 1% above the 0.0400 figure), the failure events could be considered s-indenendent for engineering purposes.

Suppose that the probability of failure of each unit is 1.00×10^{-3} and th probability of subsystem failure is 1.00×10^{-6}; then the failure events are s-independent. But if the probability of sulsystem failure were 0.000401 (0.0004 more, just as in the preceding paragraph), the failure events would in no way be s-independent. When failure probabilities are very small, one must be very careful not to ignore events whose probabilities might ordinarily be neglected.

2-4 CONDITIONAL s-INDEPENDENCE

A very important concept is conditional s-independence; i.e., two (or more) events can be conditionally s-independent, given a particular event. All general theorems on probabilities are valid also for conditional probabilities with respect to any particular event C_{i}. Thus Eq. 2-25 becomes

$$
\begin{align*}
\operatorname{Pr}\left\{A \mid\left(B \cap C_{i}\right)\right\} & =\operatorname{Pr}\left\{A \mid\left(B \cap C_{i}\right)\right\} \tag{2-27}\\
& =\operatorname{Pr}\left\{A \mid C_{i}\right\}
\end{align*}
$$

and Eq. 2-26 becomes

$$
\begin{equation*}
\operatorname{Pr}\left\{A \cap B \mid C_{i}\right\}=\operatorname{Pr}\left\{\lambda \mid C_{i}\right\} \operatorname{Pr}\left\{B \mid C_{i}\right\} . \tag{2-28}
\end{equation*}
$$

In many engineering situations, if two events A and B (say, failures) are not s-independent, they will be conditionally s-independent, given each event of a set of events which is a partitioning of the sample space.

Example.

A_{p}, A_{G} events that unit U_{A} is failed or good
B_{F}, B_{G} events that unit U_{3} is faised or good
Let the sample points, events, and associated probabilities be as shown in Table 2-1. The probability of each event, as shown, is the sum of the probabilities of each of the sample points in the event.

Are the events A_{F}, B_{F} s-independent? To find out, use Eq. 2-26.

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{F} \cap B_{F}\right\}=\operatorname{Pr}\left\{\left(a_{l} b_{f}\right)\right\}=0.158 \\
& \operatorname{Pr}\left\{A_{F}\right\} \times \operatorname{Pr}\left\{B_{F}\right\}=0.250 \times 0.380
\end{aligned}
$$

$$
=0.095
$$

They are not the same ($0.158 \neq 0.095$); so the events A_{F}, B_{F} are s-dependent.

Suppose there are two possible euvironments, light (event E_{L}) and severe (event E_{s}), and that the new sample space, events, and probabilities are as shown in Table 2-2. The events A_{F} and B_{F} are conditionally 8 -inde-

TABLE 2-1. SAMPLE SPACE FOR EXAMPLE

	$\begin{gathered} { }^{5_{G}} \\ 0.620 \end{gathered}$	$\begin{gathered} \theta_{\mu} \\ 0.380 \end{gathered}$
$\begin{gathered} A_{G} \\ 0.750 \end{gathered}$	$\begin{gathered} a_{q} b_{g} \\ 0.528 \end{gathered}$	$\begin{array}{r} a_{0} b_{f} \\ 0.222 \end{array}$
$\begin{gathered} \boldsymbol{A}_{\boldsymbol{F}} \\ \mathbf{0 . 2 5 0} \end{gathered}$	$\begin{gathered} a, b_{g} \\ 0.092 \end{gathered}$	$\begin{array}{r} 2,6 f \\ 0.156 \end{array}$

The number associated with each of the 4 sample points $\left(a_{g} b_{g}, a_{g} b_{f}, a_{f} b_{g}, a_{f} b_{f}\right)$ is the probability of that sample point.

The events are defined as

$$
\begin{aligned}
& A_{G}=\left(P_{p} \dot{0}_{g} \cdot A_{j} \dot{b}_{f}\right) \\
& A_{F} \equiv\left(a b_{g}, 2 p_{j}\right) \\
& B_{G} \equiv\left(\sigma_{g} b_{z}, a A_{s}\right) \\
& \theta_{F}=\left(a_{f} b_{f}, A_{i} b_{f}\right)
\end{aligned}
$$

pendent as shown by the calculations in Table 23. Eqs. $2-28$ and $2-19$ are used in the calcu1. tion.

The conditions under which events are conditionally 8 -independent are sometimes called common-modes,* and the failures which result from severe commoa-modes are called common-mode failures. This phenomenon is so important it will be illustrated with another example.

Example, Common mode (cause) failure: Notation:
$A_{F}, B_{p}=$ failure events of units U_{A} and U_{B}.
$S_{F} \quad=A_{F} \cap B_{F}$, failure event of $=$ the system S.
$E_{B}, E_{H T}, E_{E T}=$ the system S. ple space: event of a Be nign Environment, a HighTempersture Environment, and an Electrical-Transient Environment.

Given: The events A_{F}, B_{F} are conditionally s-independent, given $E_{i}(i=B, R T$, ET).

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{F} \mid E_{B}\right\}=\operatorname{rr}\left\{B_{F} \mid E_{B}\right\}=6 \times 10^{-4}, \\
& \left.\operatorname{Pr}, E_{B}\right\}=0.9976 \\
& \operatorname{Pr}\left\{A_{F} \mid E_{H T}\right\}=\operatorname{Pr}\left\{B_{F} \mid E_{H T}\right\}=1 \times 10^{-2}, \\
& \operatorname{Pr}\left\{E_{H T}\right\}=2 \times 10^{-3} \\
& \operatorname{Pr}\left\{A_{F} \mid E_{E T}\right\}=\operatorname{Pr}\left\{B_{Z} \mid E_{E T}\right\}=1 \times 10^{-1}, \\
& \operatorname{Pr}\left\{E_{B T}\right\}=4 \times 10^{-4},
\end{aligned}
$$

Cursory inspection of the data shows that U_{A} and U_{B} are quite reliable if the environment is benign, and that noubenign environmentz are rare. We first calkulate tise unconditional fail. ure probability for U_{A} and U_{B} (see Table 2-4). It is negligibly different from the benign conditional fallure probability. This leads us to believe, reasonably enourh, that the effects of the nonbenign environments are negligible.

But then we calculate the provabilities that, both U_{A} sind U_{B} are failed (see Table 24). The situation is now quite different; one of the nonbenign crvironaents is most impertant.

[^0]TABLE 2-2. SAMPLE SPACE FOR MODIFIED EXAMPLE

	$B_{G} E_{L}$	$B_{F} E_{L}$
	0.560	0.140
$A_{G} E_{L}$	$p 111$	$p 121$
0.630	0.504	0.126
$A_{F} E_{L}$	$p 211$	$p 221$
0.070	0.056	0.014

	$B_{G} E_{S}$	$B_{F} E_{S}$
	0.060	0.240
$A_{G} E_{S}$	$p 112$	$p 122$
0.120	0.024	0.096
$A_{F} E_{S}$	$p 212$	$p 222$
0.180	0.036	0.144

$E_{L}=(p 111, p 121, p 211, p 221) ; A_{G}=(p 111, p 121, p 112, p 122) ; B_{G}=(p: 11, p 211, p 112, p 212)$
$E_{S}=(p 112, p 122, p 212, n 222)_{i} \quad F=(p 211, p 221, \rho 212, \rho 222) ; B_{F}=(\omega 121, p 221, p 122, \rho 222)$

Explanation of notation sor $p_{i j k}$:
i position reserved for event A
; position reserved for event B
k position reserved for event E
$1=$ "good" for events A and B
$2=$ "fail" for events A and B
1 = "light" for event E
2 = "severe" for event E

ANMCP 700-187

TABLE 2.3. CALCULATIONS TO SHON EVENTS A_{F} AND B B_{F} ARE CONDITIONALLY S-INDEPENDENT

Proceder:

1. State the sample space, events, and 'heir probebilities.
2. State the wents to be fested for conurionell s-indeper dence and the conditions.

3. State the equations to be tested.

$\operatorname{Pr}\{A \cap B)\left(C_{1}\right\} ? \operatorname{Pr}\left\{A \mid C_{i}\right\} \operatorname{Pr}\left\{B \mid C_{i}\right\}$
(2-28)
4. Use the definition of conditional probability to find each of the probebilitios.
$\operatorname{Pr}\{A \mid B\}=\operatorname{Pr}\{A \cap B\} / \operatorname{Pr}\{B\}$ for $\operatorname{Pr}\{B\} \neq 0$
5. Find the sample points in each of the intersections.
6. Find the probabilities by adding the probabilities of the sample points.

Example

1. See Tsole 2-2.
2. A_{F}, A_{c} to be conditionally s-independent. $E_{L} \cdot \mathbb{F}_{S}$ re the conditions.
3. $\operatorname{Pr}\left\{\mathcal{A}_{F} \cap B_{F}| | E_{i}\right\}^{?}=\operatorname{Pr}\left\{\mathcal{A}_{F} \mid E_{i}\right\} \operatorname{A} \cdot\left\{B_{F} \mid E_{i}\right\}$ for $i=L . S$

4. $\operatorname{Pr}\left\{\left(A_{F} \cap B_{F}\right) \\| E_{j}\right\}=\operatorname{Pr}\left\{A_{F} \cap B_{F} \cap E_{i}\right\} / \operatorname{Pr}\left\{E_{j}\right\}$	(2-29)
$\operatorname{Pr}\left\{A_{F} \mid E_{j}\right\}=\operatorname{Pr}\left\{A_{F} \cap E_{j}\right\} / \operatorname{Pr}\left\{E_{j}\right\}$	(2-30)
$\operatorname{Pr}\left\{B_{F} \mid E_{i}\right\}=\operatorname{Pr}\left\{B_{F} \cap E_{i}\right\} / \operatorname{Pr}\left\{E_{i}\right\}$ for $i=L, S$	[2-31)

5. $\left.A_{F} \cap B_{F} \cap E_{L}=6221\right)$
$A_{F} \cap B_{F} \cap E_{S}=(\mathbf{0} 222)$
$A_{F} \cap E_{L}=(0211, p 221)$
$A_{F} \cap E_{S}=6212, p 22.1$
$B_{F} \cap E_{L}=$ (0121.p221)
$G_{F} \cap E_{S}=(0122, p 223)$
6. $\operatorname{Rr}\left\{A_{F} \cap B_{F} \cap E_{L}\right\}=0.014$
$\operatorname{Pr}\left\{A_{F} \cap B_{F} \cap E_{S}\right\}=0.144$
$\left.\operatorname{Pr}\left(A_{F}\right) E_{L}\right)=0.056+0.014=0.070$
$\operatorname{Pr}\left\{A_{F} \cap E_{S}\right\}=0.036+0.144=0.180$
$\operatorname{Pr}\left\{B_{F} \cap E_{L}\right\}=0.126+0.014=0.140$
$\operatorname{Pr}\left\{B_{F} \cap E_{S}\right\}=0.096+0.144=0.240$
$\operatorname{Pr}\left\{E_{L}\right\}=0.504+0.126+0.056+0.014=0.700$
$\operatorname{Pr}\left\{E_{S}\right\}=0.024+0.096+0.036+0.144=0.300$
7. $\operatorname{Pr}\left\{\left(A_{F} \cap B_{F}\right) \mid E_{L}=0.014 / 0.700=0.020\right.$
$\operatorname{Pr}\left\{A_{F} \cap B_{F} \mid E_{S}\right\}=0.144 / 0.300 \times 0.480$
$\operatorname{Pr}\left\{A_{F} \mid E_{L}\right\}=0.07010 .700=0.100$
$\operatorname{Pr}\left\{A_{F} \mid E_{S}\right\}=0.180 / 0.300=0.600$
$\operatorname{Pr}\left\{B_{F} \mid E_{L}\right\}=0.140 / 0.700=0.200$
$\operatorname{Pr}\left\{B_{F} \mid E_{S}\right\}=0.240 / 0.300-0.800$

$$
\begin{aligned}
& \text { for } 1=L: \\
& 0.020 \stackrel{?}{=} 0.100 \times 0.200=0.020 \\
& \text { for } 1=S \\
& 0.480 \stackrel{?}{=} 0.600 \times 0.800=0.480
\end{aligned}
$$

(2.29)
8. Check the equations in step 3

The events $A_{F}, \boldsymbol{B}_{F}$ wit: conditionally s-independent, given each of the conditions E_{L}, E_{S}. As shown in the previous example, A_{F}, $\boldsymbol{E}_{\boldsymbol{F}}$ are not (unconditionally) s-independent.

In systems which use redundancy to achieve very high reliability, the importance of common-mode failures often is overlooked
completely. The key nature of conditional sindependence ought always to be in the analyst's mind when he uses redundancy.

TABLE 2-4. CONMON MODE (CAUSE) FAILURE CALCULATIONS

Procedure		Example
1. Calculate the $\operatorname{Pr}\left\{A_{F}\right\}$ Adapt		$\begin{equation*} \operatorname{Pr}\left\{A_{F}\right\}=\sum_{i=1}^{3} \operatorname{Pr}\left\{A_{F} \mid E_{i}\right\} \operatorname{Pr}\left\{E_{i}\right\} \tag{2.32} \end{equation*}$
$\operatorname{Pr}\{A\}=\sum_{j=1}^{N_{B}}\left\{A \mid B_{j}\right\} \operatorname{Ar}\left\{B_{j}\right\}$	(2-23b)	$\begin{aligned} & \left(6 \times 10^{-4}\right) \times 0.9976+\left(1 \times 10^{-2}\right) \times\left(2 \times 10^{-3}\right) \\ & +\left(1 \times 10^{-1}\right) \times\left(4 \times 10^{-4}\right) \times 6.59 \times 10^{-4} \end{aligned}$
2. Cakculate $\operatorname{Pr}\left\{\Delta_{F}\right\}$		$\operatorname{Pr}\left\{B_{F}\right\}=\operatorname{Pr}\left\{A_{F}\right\}=6.59 \times 10^{-4}$ because A_{F} and B_{F} are interchangeable in the probabillties as given.

The unconditional probsbilities differ from the benign conditional ones by less than $\mathbf{1 0 \%}$. (In practice rarely is a low probability of failure known as accurately as within $\div \mathbf{1 0 \%}$.)
3. Calculate the conditional probabilities of $A_{F} \cap B_{F}$. Adapt

Eq. 2-28. $\operatorname{mr}\left\{A_{F} \cap B_{F}| | E_{i}\right\}=\operatorname{Pr}\left\{A_{F} \mid E_{i}\right\} \operatorname{Pr}\left\{B_{F} \mid E_{i}\right\}$, fori $=\mathrm{B}, \mathrm{HT}, \mathrm{ET}$.
4. Calculate $\operatorname{Ar}\left\{A_{F} \cap B_{F}\right\}$.

Adapt Eq. 2-23b.
5. Calculate $\operatorname{Pr}\left\{\boldsymbol{A}_{\boldsymbol{F}}\right\} \operatorname{Pr}\left\{\boldsymbol{B}_{\boldsymbol{F}}\right\}$
3. $\left.\operatorname{Pr}\left\{\left(\mathcal{A}_{F}\right) B_{F}\right) \mid E_{B}\right\}=\left(6 \times 10^{-4}\right)^{2}=0.00036 \times 10^{-3}$
$\operatorname{Pr}\left\{\left(A_{F} \cap B_{F}\right) \mid E_{H T}\right\}=\left(1 \times 10^{-2}\right)^{2}=0.1 \times 10^{-3}$
$\operatorname{Pr}\left\{\left(A_{F}\right)\left(B_{F}\right) \mid E_{E T}\right\}=\left(1 \times 10^{1}\right)^{2}=10 \times 10^{3}$
4. $\operatorname{Pr}\left\{A_{F^{(1)}}\right\}=\left(0.00036 \times 10^{-3}\right) \times 0.9976+\left(0.1 \times 10^{-3}\right)$ $\left.\times\left(2 \times 10^{-3}\right)+\left(10 \times 10^{-3}\right) \times 14 \times 10^{9}\right)=0.36 \times 10^{-4}$ $+0.200 \times 10^{-6}+4 \times i 0^{-6}=4.56 \times 10^{-6}$

From step 4 it is seen that virturlly the only "cas se" of system falure is the common-mode Electrical Tramsient Environment. Fiem step 5 , it is men that if (unconditionall s-Indepe idence were to have been assumed, the failure probability of the system would have been underestimated by a factor of 10 .

2-5 DISTRIBUTIONS

Very often the sample space is a subset of the integers (or can be put into 1-1 correspondence with some of the integers), and the probability to be assigned to a sample point is a function of the integer which corresponds to the sample point. The probability mass function ($p m f$) is the function which assigns a probability to each sample point. This is illustrated in Table 2-5.

2-5.1 RANDOM VARIABLES

When the sample space is associated with
the integers, it is convenient to introduce the notion of random variable. For sxample, the events C_{i} and E_{i} in this chapter are random variables, and the probability of the event depends on the integer i. A variable is a random variable if the uncertainty involved with it is important, i.e., if probahilities need to be associated with it. This is an engineering decision; for example, the lengths of posts to be driven in the ground might not be considered random even though they had a spread of $\pm 10 \%$, whereas the diameters of ball bearings would prohably be random variables if their spread was $\pm 1 \%$.

TABLE 2-5. DISCRETE DISTRIBUTIONS

	Einomial	Poisson*
Narameters	$\begin{aligned} & p_{1}, p_{2}, N \\ & \left(\rho_{1}+p_{2}=1\right) \end{aligned}$	μ
random variables	$\begin{aligned} & n_{1}, n_{2} \\ & \left(n_{1}+n_{2}=N\right) \end{aligned}$	n
pmf	$\frac{N!}{n_{1}!n_{2}!} p_{1}^{p_{1} p_{2}}$	$\frac{e^{\bullet \mu} \mu^{n}}{n!}$
mean μ	$p_{1} N, p_{2} N$	μ
variance σ^{2}	$p_{1} p_{2} N$	μ
3rd central moment \boldsymbol{M}_{3}	$N p_{1} p_{2}\left(\rho_{2}-p_{1}\right)$	μ
4th central moment M_{4}	$N p_{1} p_{2}\left(3 N p_{1} p_{2}-6 p_{1} p_{2}+1\right)$	$\mu(3 \mu+1)$
coefficient of variation $\frac{\sigma}{\mu}$	$\left(\frac{p_{2}}{p_{1} N}\right)^{1 / 1}$	$\mu^{-1 / 4}$
coefficient of skewness $\frac{M_{3}}{0^{3}}$	$\frac{\rho_{2}-p_{1}}{\left(N p_{1} \rho_{2}\right)^{1 / 2}}$	$\mu^{-1 / 4}$
excess coefficient of kurtosis $\frac{M_{4}}{\sigma^{4}}-3$	$-\frac{6}{N}+\frac{1}{N \rho_{1} \rho_{2}}$	μ^{1}

[^1]
CHAPTER 3 REVIEW OF ELEMENTARY PROBABILITY THEORY (CONTINUOUS)

$3-0$:IST OF SYMBOLS

$$
\begin{aligned}
C & =\text { Conditional event } \\
\operatorname{Cdf}\} & =\text { Cumulative distribution function } \\
\operatorname{Cov}\} & =\text { Covariance } \\
E\} & =s-\text { Expected vaiue } \\
f(x) & =p d f\{X\} \\
M_{i} & =\text { ith central moment } \\
\operatorname{pdf}\} & =\text { probability density function } \\
\operatorname{Pr}\} & =\text { Probability of } \\
8- & =\text { denotes statistical definition } \\
S f\} & =\text { Survivor function } \\
\operatorname{Var}\} & =\text { Variance } \\
x, y, z & =\text { particular values of } X, Y \text { (also used } \\
& \text { as subscripts) } \\
X, Y, Z & =\text { random variables } \\
\mu & =\text { mean } \\
\sigma & =\text { standard deviation } \\
\int_{X} & =\text { integral over the domain of } X
\end{aligned}
$$

3-1 INTRODUCTION

When the sample space is continuous rather than discrete, the theoretical basis of probability theory can become much more sophisticated. However, many relatively simple problems can be solved by a straightforward extension of the concepts in Chapter 2. Only those straightforward concepts are disciussed in this volume. Those who need more advanced concepts ought to consult: the Bibliography in Chapter 1.

The concept of probabilit ${ }_{j}$-density needs to be introduced. It is anale scus to physical density functions, where cortinuous variables are being used. For example, a $10-\mathrm{ft}$ long uniform bar which weighs 200 lb has a density of $(200 \mathrm{lb}) /(10 \mathrm{ft})=20 \mathrm{lb} / \mathrm{ft} \mathrm{It}$ is not meaningful to talk about the weignt of a point along the bar, only the weight tietween two points. If the bar is nonuniform, then the density changes from point to point along the bar.

Probability densities can be very misleading because of possible transformations of the variables. For example, if a random variable has a uniform (constant) probability density,
the logarithm of that random variable will NOT have a uniform probability density.

The basic rules for probability are quite similar to those for the discrete case, but the notation is usually somewhat different.

3-2 BASIC PROBABILITY RULES

3-2.1 SAMPLE SPACE, EVENT

The sample space is the domain of the random variable (i.e., the values that can possibly be assumed by the random variable) or the domains of the several random variables. For example, the strength of a metal has the domain ($0, \infty$).

An event is the occurrence of some portion of the sample srace. For example, an event might be "Strength $>S_{0}$ " where S_{0} is some constant. Figu_ 3-1 shows some set rules for continuous space.

3-2.2 NOTATION AND DEFINITIONS

Notation	Definition
capital letter	The name of a random variable.
lower case letter	A specific value of the random variable.
$\operatorname{Pr}\{\cdot\}$	Probability of the event in the \{ \}; e.g., $\operatorname{Pr}\{X \leqslant x\}=$ probability of the event $X<x$
$\operatorname{Pr}\{\cdot \mid \cdot\}$	Conditional probability; probability of the event to the left of the I, given that the event (condition) to the right of the 1 has occurred.
$\operatorname{Pr}\{\because ;\}$	Probability of the event to the left of the semicolon. The events or parameters to the right of the semicolon are known. The notation is often 'dsed for emphasis or as a reminder.

(A) Union of X and Y (written $X \cup Y$)

(B) Intersection of X and Y (written $X \cap Y$)

(C) $A \operatorname{set}(A)$ and its complement (\bar{A})

FIGURE 3-1. Venn Diagrams Showing Set Refationships

3-2.3 RULES, LAWS, AND DEFINITIONS FOR PROBABILITY DENSITIES

Let X, Y be suitable random variables with domains $(-\infty, \infty)$.

$$
\begin{gather*}
p d f\{X\} \geqslant 0 \tag{3-1}\\
0<C d f\{X\}<1 \tag{3-2a}\\
0 \leqslant \operatorname{Sf}\{X\} \leqslant 1 \tag{3-2b}
\end{gather*}
$$

Let

$$
\begin{aligned}
f(x) & \equiv p d f\{X\} \\
F(x) & \equiv C d f\{X\} \\
g(y) & \equiv p d f\{Y\} \\
G(y) & \equiv C d f\{Y\} \\
h(x y) & \equiv \text { joint } p d f \text { of } X \text { and } Y \\
H(x y) & \equiv \text { joint } C d f \text { of } X \text { and } Y
\end{aligned}
$$

then

$$
\begin{align*}
& f(x) \equiv \text { marginal } p d f \text { of } x \\
& F(x) \equiv \text { marginal } C d f \text { of } x \\
& g(y) \equiv \text { marginal } p d f \text { of } y \\
& G(y) \equiv \text { marginal } C d f \text { of } y \\
& F(x)=H(x, \infty) \tag{3-3a}\\
& G(y)=H(\infty, y) \tag{3-3b}
\end{align*}
$$

While " h or H " uniquely determines " f or F " and " g or G ", " f or F " and " g or G ", uniquely determining " h or H " is not true because the form of the ε-dependence of x and y is not then known.

3-2.4 TRANSFORMATION OF VARI. ABLES

Let X, Y be two suitable random variables

$$
\begin{align*}
f(x) & \equiv p d f\{X\} \\
g(y) & \equiv p d f\{Y\} \\
y & =y(x) \\
g(y) d y & =f(x) d x \tag{3-4a}\\
g(y) & =f(x)\left|\frac{d x}{d y}\right| \tag{3-4b}
\end{align*}
$$

The form of Eq. 3-4a is usually easier to remember. Variables can be transformed direct. ly, within a Cdf, with no complications at all.

3-2.5 CONVOLUTION

Let

1. Z, X, Y be suitable random variables with domains $(-\infty, \infty)$
2. $Z=X+Y$
3. $w(z)=p d f\{Z\}$
$f(x)=p d f\{Y\}$
$\boldsymbol{g}(\boldsymbol{y})=\mathrm{pdf}\{\mathbf{Y}\}$
$h(x, y)=p d f\{X, Y\}$
Then, the convolution formula is

$$
\begin{align*}
w(z) & =\int_{-\infty}^{\infty} h(z-y, y) d y=\int_{-\infty}^{\infty} h(x, z-x) d x \tag{3-5}\\
& =\int_{-\infty}^{\infty} h(x, z-x) d x
\end{align*}
$$

If X and Y are s-independent, then the convolution formula is

$$
\begin{align*}
w(z) & =\int_{-\infty}^{\infty} f(x) g(z-x) d u=\int f(z-y) g(y) d y \\
& =\int_{-\infty}^{\infty} f(z-y) g(y) d y \tag{3-6}
\end{align*}
$$

3-3 s -INDEPENDENCE AND CONDITION. AL s-INDEPENDENCE

The notion ff s-independence is analogous to that for discrete distributions.
X, Y are s-independent random variables if and only if

$$
\begin{equation*}
\operatorname{pdf}\{X, Y\}=p d f\{X\} p d f\{Y\} \tag{3-7}
\end{equation*}
$$

The concept is the same for conditional s-independence. X, Y are conditionally s-independent random variables if and only if

$$
\begin{equation*}
\operatorname{pdf}\{X, Y \mid C\}=p d f\{X \mid C\} p d f\{Y \mid C\} \tag{3-8}
\end{equation*}
$$

where $C=$ a condition (event).
Conditional s-independence plays a very important role in reliability calculations where redundancy is involved.

3-4 DISTRIBUTIONS

In reliability engineering the most common domain for a random variable is ($0, \infty$). Examples of variables with the domain $(0, \infty)$ are strength, time, failure rate. In many cases where the domain is $(-\infty, \infty)$, the probabilities associated with $(-\infty, 0)$ are negligible and are included only to simplify the mat!ematics. This is especially true for the 8 -normal distribution wherein negative values of some variables are physically meaningless; but it is convenient to integrate over the whole real line.

Continuous mathematical distributions rarely represent physical phenomena over the entire domain of the variable. Usually, however, the probabilities associated with the disturbing part of the domain are negligible. If they are not, then of course, the model must be reformulated.

3-4.1 MOMENTS

Random variables with pdf's have moments. The two conventional points about which to take moments are the origin and the mean; when taken about the mean, they are called central moments. Two random variables can have joint moments, although only the second is used practically. Lei X be the random variable and $f(x) \equiv p d f(X\}$.

The nth moment (about the origin) of X is the s-expected value of x^{n} :

$$
\begin{equation*}
E\left\{X^{n}\right\} \equiv \int_{x} x^{n} f(x) d x \tag{3-9}
\end{equation*}
$$

where X implies the integral over the domain
TARLE 3.1. DISTRIBUTION:

	exponental	s-normal*	tosnormal	Weibull	comma**	untore
parameters	λ	$\mu, \sigma,-\infty<\mu<\infty$	$\alpha, \beta, B \in \exp \left(1 / \beta^{2}\right)$	$\begin{gathered} \alpha, \beta, B_{n} \equiv \Gamma(1+n / \beta), \\ b_{n} \equiv B_{n} \mid B_{i}^{\prime} \end{gathered}$	α, β	a,b; $-\infty<e<b<\infty$
random vanable	${ }^{x}$	$x,-\infty<x<\infty$	x	x	x	$x: 8<x<0$
pdf	$\exp \left(-\lambda_{\lambda}\right)$	$\begin{aligned} & \frac{1}{v \sqrt{2 \pi}} \\ & \exp \left[-1,\left(\frac{x-\mu}{n}\right)^{2}\right] \end{aligned}$	$\frac{\dot{\psi}}{x \sqrt{2^{F}}} \underset{\exp }{ }\left\{-1_{2}\left[\ln \left(\frac{x}{a}\right)^{3}\right]^{2}\right\}$	$\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\alpha-1} \exp \left[-\left(\frac{x}{\alpha}\right)^{d}\right]$	$\frac{1}{\alpha \Gamma(\beta)}\left(\frac{x}{\alpha}\right)^{\mu} \exp \left(-\frac{x}{a}\right)$	1/(b-a)
$\begin{aligned} & \text { fallure rate } \frac{\text { paf }}{\mathrm{sf}} \\ & \text { fif smple) } \end{aligned}$	A	goes from 0 to 0 +	soes frome 0 to a max. then to 0	${ }_{a}^{\beta}\left(\frac{x}{a}\right)^{3-1}$	monotonic	1/(b-x)
median	((ln 2) 2	μ	\sim	$\alpha(\ln 2)^{1 / 3}$	not tractable	Tra $e+$ b)
mode	0	μ	a B	max $\left\{0\left(1-\frac{1}{B}\right)^{1 / \alpha} 0\right\}$	$\max \{a(\beta-1), 0\}$	nose
mean μ	$1 / \lambda$	μ	$\approx B^{1}$	${ }_{\sim} B_{1}$	as	${ }^{2} \mathrm{~S}(\mathrm{a}+\mathrm{b})$
varance 0^{2}	$1 \lambda^{2}$	3^{2}	$\alpha^{2} B(B-1)$	$\alpha^{2} B_{1}^{2}\left(b_{2}-1\right)$	$\mathrm{a}^{2} \mathrm{~B}$	$(b-a)^{2} / 12$
Jrd central moment M_{3}	$2 \lambda^{\prime}$	0	$a^{3} B^{3 / 2}(B-1)^{2}(B+2)$	$a^{3} B_{1}^{3}\left(b_{3}-3 b_{2}+2\right)$	$2 a^{3} \beta$	0
the central moment $\mathrm{H}_{ \pm}$	$19 x^{4}$	30^{4}	$\begin{aligned} & a^{4} B^{2}(B-1)^{2} \\ & \left(B^{4}+2 B^{3}+3 B^{2}-3\right) \end{aligned}$	$A^{4} B_{1}\left(b_{4}-4 b_{3}+6 b_{2}-3\right)$	$3 a^{4}$	$(b-a)^{4} / 80$
coefficient of varation of μ	1	${ }^{\prime} \boldsymbol{\mu}$	$(B-1)^{\text {b }}$	$\left(b_{2}-1\right)^{n}$	1/8 ${ }^{\text {n }}$	$\frac{b-a}{\sqrt{3}(b+a)}$
coefficient of skewness M, 0^{7}	2	0	$(B-1)^{\prime \prime}(B+2)$	$\left(b_{3}-3 b_{2}+2\right) /\left(b_{2}-1^{3 / 2}\right.$	2/84	0
excess coefficent of kurtosis $\frac{M_{A}}{\sigma^{4}}-3$		0	$\left.(B-1) B^{3}+3 B^{2}+6 B+6\right)$	$-3+\frac{\left(b_{1}-4 b_{3}+6 b_{3}-3\right)}{\left(b_{2}-1\right)^{2}}$	6/8	-1.2

[^2]of X. (It is presumed that the integral converges abolutely; if not, a textbook ought to be consulted.)

The nth moment, about the mean, of X is the sexpected value of $(X-\mu)^{n}$:

$$
E\left[(X-\mu)^{n}\right\}=\int_{x}(x-\mu)^{n} f(x) d x(3-10)
$$

where $\mu \equiv \mathcal{E}\{X\}$
Let X and Y be random variables

$$
\begin{align*}
& f(x) \equiv p d f\{X\} \\
& g(y) \equiv p d f\{Y\} \\
& h(x, y) \equiv p d f\{X, Y\} \\
& \mu_{x} \equiv E\{X\} \\
& \mu_{y} \equiv E\{y\} \\
& \text { then } \operatorname{Var}\{X\} \equiv E\left\{(x-\mu)^{2}\right\} \tag{3-11}
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{Cov}\{X, Y\} \equiv E\left\{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right\} \\
\equiv & \int_{x} \int_{y}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) h(x, y) d x d y \tag{3-12}
\end{align*}
$$

The linear-correlation coefficient is defined as

$$
\begin{equation*}
\rho \equiv \frac{\operatorname{Cov}\{X, Y\}}{[\operatorname{Var}\{X\} \operatorname{Var}\{Y\}]^{1 / 3}} \tag{3-13}
\end{equation*}
$$

3-4.2 DISTRIBUTIONS AND THEIR PROP. ERTIES

The most popular distribution for time. to-failure or time-between-failures is the exponential. There are two reasons for this popularity.

1. The distribution fits many data without doing too much violence to an engineering concept of goodness-of-fit.
2. The failure rate is a constant, and thus the distribution is very tractable.

The most popular distribution for material properties, device parameters, and generalized "stremes", "potentials", and "currents" is the s-normal distribution. There are two reasons for its popularity.

1. The distribution fits many data without doing too much violence to an engineering concept of goodnest-of-fit.
2. The distribution is so tractable, has no parameters for the basic distribution, and convolves into itself.

Most distributions can be transformed into something that looks different by a linear transformation of the variable. Custom, more than anything else, determines what the standard form is. If a linear transformation X $=a U+b$ is applied to a distribution, the mean and variance are transformed as follows:

$$
\begin{align*}
& E\{X\}=a \boldsymbol{E}\{U\}+\boldsymbol{b} \tag{3-14a}\\
& \operatorname{Var}\{X\}=\boldsymbol{a}^{2} \operatorname{Var}\{U\} \tag{3-14b}
\end{align*}
$$

There are usuaily several ways of writing the parameters of a distribution, e.g., a scale parameter can be used in the form λx or x / α (where x is the random variable and α, λ are parameters). The forms in Table 3.1 are chosen to be useful to reliability engineers.

REFERENCE

1. W. G. Ireson, Ed., Reliability Handbook, McGraw-Hili Book Comrany, Inc., N.Y. 1966.

CHAPTER 4 REVIEW OF ELEMENTARY STATISTICAL THEORY

41 INTRODUCTION

This chapter presents some of the statiatical concepts which are useful in a reliability context. The Bibliography at the end of Chapter 1 gives elementary, intermediate, and advanced texts on probability and statistics. It is not the purpose of this chapter to write another textbook on statistics.

The purpose of statistics is to help people analyze real data and draw reasonable conclusons from them. In reliability engineering, the function of statistics most often will be in showing an engineer what he does NOT know from the data; i.e., statistics will provide an engineer with a feeling for the uncertainty in the conclusions he wants to draw from the data.

The few concepts of statistics that are important in reliability ought to be carefully learned. It is better not to use them than to use them incorrectly.

42 ESTIMATION OF PARAMETERS

It is usually convenient to summarize a mass of data by stating a distribution from which they might well have come. This usually is done by choosing a distribution (on the basis of previous ideas, simplicity, massaging of the data, or something else) and then estimating the parameters of the distribution. There are several popular methods of estimating parameters; they are not detailed here-but Part Six, Mathematical Appendix and Glossury, shows estimation methods for many of the popular distributions.

The important thing about an estimate is its properties, not how you got it. In these days of readily available computers, the cost of making estimates whose properties are good and well known is negligible compared to the cost of getting the original data.

4-2.1 s-EFFICIENT ESTIMATOR

For engineers, s-efficiency is what estimation is all about. Any estimator uses a statistic; that statistic has properties such as a mean value and a variance. The s-efficiency of an
eatimator is measured by the second moment of the eatimator taken about the true value. If the eatimator is s-bjased (par. 4-2.3), then this second moment is "variance + (biss) ${ }^{2}$ ". If the eatimator is s-unbiased (zero bias), s-efficiency is measured by the variance of the estimator. For a fixed sample size, the smaller the variance of the estimator, the more sefficient it is.

There is a lower bound to the variance of an estimator-the Cramer-Rao lower bound. s-Efficiencies often are measured relative to the Cramer-Rao lower bound; if this s-efficiency is 100 percent, that's as s-efficient as one can get. Most eatimators used in reliability work are quite s-efficient.
s-Efficiency is perhaps the most desirable property of an estimator. It tells you how good or bad your estimate is likely to be.

4-2.2 s-CONSISTENT ESTIMATORS

An 8 -consistent estimator is one which "approaches" the true value as the sample size "goes to infinity". The reason for the quote marks is that the phrases are loose expressions of complicated mathematical concepts; for a more exact definition, consult a textbook. s-Consistency is a very desirable attribute of an estimator. Virtually all estimators in use in reliability work are s-consistent.

4-2.3 s-BIAS

s-Bias is the difference between the s-expected (mean) value of an estmator (for a fixed sampling plan) and the true value. It enters the measure of s-efficiency (par. 4-2.1); as long as the s-bias is less than about 50 percent of the standard deviation, the contribution of the s-bias can be neglected. Being s-unbiased is nice for theoretical work, but it is vastly overrated as a criterion for goodness of reliability estimators. The main reason for this is that if $\hat{\theta}$ is an s-unbiased estimator of $\theta, f(\hat{\theta})$ is an s-biased estimator of $f(\theta)$ unless $f(\cdot)$ is a linear function. The most widespread misunderstanding of this principle is involved in the estimate for the variance of an s-normal distri. bution. The S^{2} statistic, $S^{2} \equiv S S /(N-i)$

- trhere SS in the sum of equares of deviations about the sample mean, and N is the number of items in the sample-in an s-unbimed ectimator of o^{2} (the true value of the variance), but S is an s-bised eatimator of σ. (The square root function is not linear.) Another example is $1 / \lambda$, the reciprocal parameter for an exponential distribution. An s-untiased estimator for $1 / \lambda$ is the sample mian, but the reciprocal of that eatimator is an s-biased estimator of λ. (The reciprocal is not a linear function.)

How is an engineer to know what function of the parameter ought to be s-unbissed? He doesn't. In general, reliability engineers can ignore s-bias of eatimators; they need onis be concemed about s-efficiency.

42.4 UNCERTAINTY

Any eatimates of parameters ought to be accompanied by an estinate of the uncertainty involved. Two common methods of indicating uncertainty are the covariance matrix and s-confidence intervals. The reliability engineer need not know how to get them, only how to use them.

43 TESTS OF s-SIGNIFICANCE

The most important thing about 8 -significance is what it isn't; it is not "engineering importance". s-Significance is concerned with tests that are run to see if one thing is different from another. A statistical model is formulated and measurements (tests) are mads; on the sample(s) to measue the difference in the items of the sampl.s. For example, does heat-treating method A prodcre Letter fatigue properties than heat-treating meesosa os: Usually the statistical hypothesis is made that there is no difference. Then the statistical distribution of the test statistic is calculated. In the example, the test statistic might be the difference in average fatigue-strengths at 10^{7} cycles of stress. The value of that test statistic for the sample(s) is messured and compared with the distribution. If a value as large as observed would occur only 0.1 percent of the time or less, the effect (difference) is not likely to have been a chance observation, but is likely to be due to one method being better than another. If the value of the test statistic
for the sample(s) would be exceeded 40 percent of the time, then it is not likely that one method is better than another. The percentage chosen (0.1 percent, 40 percent, etc.) is called the s-iqnificance level. In practice, engineers want the effect to be e-significant at a 20 percent level or lems.

Regardless of the outcome of the statistical test, the engineer wants the effect to be of engineering importance. It is pomible to take a sample small enough so that no matter what the actual difference is, it will not be e-fignificant because the uncertainties due to too few data overwhelm all other considerations. On the other hand, it is also possible to take so much data that the difference will be $s-$-ignificant, no matter how small the effect. Tests of s-ignificance suffer from being equivalent to point estimates. Engineers would rather estimate the difference between two methods and the uncertainty in that estimate. This procedure is discussed in par. 4-4 on s-confidence statements.

4-4 -CONFIDENCE STATEMENTS

As with s-significance there is an important difference between the engineering and statistical concepts. s-Confidence i: a statistical concept with a very special, exact meaning. Don't use the concept without understanding that meaning.

An example statement is a good way to understand the concept.
"The true improvement in fatigue strength (method B over method A) lies between -1.7 and $+10.9 \mathrm{kips} / \mathrm{in}^{2}{ }^{2}$ at a 90 percent s-confidence level."
The 90 percent s-confidence level means that 90 percent of the times that owe goes through the statistical manipulations as dore for this example, the resulting statement will be correct; 10 percent of the time it will be wrong. The -1.7 and $+10.9 \mathrm{kips} / \mathrm{in} .^{2}$ are called the 8 -confidence limits.

For a given set of sample measurements, the higher the s-confidence level is, the wider the 8 -confderic: limits will be.

An engineer might look at the s-confidence statement and say, "Even if the improvement in fatigue strength were as good as
the top limit, it wouldn't be too useful. We need an improvement of at least $20 \mathrm{kips} / \mathrm{in}^{2 n}$ There is probably little point, then, in running more teats. However, if he says, "All we need is 5 lips/in. ${ }^{2}$ improvement," he undoubtedily would want to run more tests to pin down the improvement more exactly.
s-Confidence is not engineering confidence, although the concepts are related.

45 GOODNESS-OF-FIT TESTS

When a particular distribution is assumed to represent a set of data, a natural question arises, "How good is the fit of the distribution to the data?" There are several statistical tests that can be performed. Some are peculiar to the distribution itself, and some can be applied to any distribution. The two most popular ones for application to any distribution are the Chi-Square and the Kolmogorov-Smirnov tests.

A goodness-of-fit test is equivalent to a test of s-ignificance (par. 4-3) and has all the difficulties associated with 8 -significance tests. That difficulty-briefly-is that it is possible to take so few data that it is impossible to reject any distribution, and it is possible to take so many data that every distribution will be rejected.

What is needed is a test for fit that answers an engineering question, such as, "If I use this distribution for interpolation, how bad will my answers be?" Unfortunately, such tests are not available. Therefore, a considerable amount of engineering judgment must be used in reckoning goodness-of-fit.

4-6 SAMPLES AND POPULATIONS

In practical situations the population, about which statistical inferences are to be made, is determined by the method in which the sample for testing was drawn. The use of historical data is fraught with extreme danger this :way. For example, electrolytic capacitors that were derated to 50 percent or less were more reliable than those derated to, say, 70 percent of their rating; results like that were obtained in reliability studies of armed forces equipment in the 1950 's. Was this sample taken from all kinds of designers, or was it taken from only a subset of designers? For
example, if the designers whose equipment was measured were such that conservative designers put electrolytic capacitors in cool places and careless designers put them in hot places, the population of designers does not include those who put very derated electrolytics in hot places nor those who put mildly derated ones in cool places.

Probably the most controversial situation of samples vs populations concerns the relationship of cigarette smoking to health. Samples were taken of smokers and nonsmokers, etc., but from what population were the people a statistically random sample?

A more frequently occurring difficulty is testing a small sample of parts and then implicitly hoping that the small sample represents the population which will be obtained from several suppliers month after month.

For really important tests, the engineer has to decide what are the possibly important effects and then find an appropriate statistician to help with sampling.

47 IFR AND DFR DISTRIBUTIONS

Sometimes it is difficult to determine a distribution of lifetimes of a unit. It may, even then, be feasible to decide thet the failure rate of the unit is always increasing (IFR \rightarrow Increasing Failure Rate) or always decreasing (DFR \rightarrow Decreasing Failure Rate). If a distribution is known to be IFR or to be DFR, bounds can be put on the failure behavior. One of these bounds is provided by the Constant Failure Rate distribution and its associated relationships.

For example, the Weihull and Gamma distributions (see Table 3-1 for notation) are IFR when the shape parameter β is greater than 1 and DFR where it is less than 1. Both have constant failure rates when the shape parameter is 1 . The s-normal distribution is IFR; the lognormal distribution is neither (at first the failure rate increases, then it decreases).

A general discussion of IFR and DFR distributions is given in Ref. 1; DFR distrıbutions are discussed in detail in Ref. 1. Bounds on reliahility parameters are given in Refs. 2-5. Refs. 6, 7 discuss the ronditions under which systems:

1. Made up of TFR elements, are themselves IFR.
2. Made up of DFR elements, are themselves DFR. Re!. 8 shows how to teat a sample to see if it comss from a disribution with a monotonic failure rate, and if so, whether it is IFR or DFR.

Even though this matnematical material is available in the literature, it is not clear how valuable it can be to the reliability engineer. An experienced statistician ought to be consulted before applying any of the results. The reliability engineer must also use his judgment in deciding how much less stringent the restrictions for this theory really are, than just to blithely assume one of the conventional distributions.

Generally speaking, the decisions about hardware will not be radically different regardless of which of several distributions is chosen to represent the life of the units. If that conclusion is not true, then the engineer is in serious trouble because he needs more information than he has.

REFERENCES

1. F. Proschan, "Theoretical Explanation of Observed Decreasing Failure Rate", Technometrics 5, No. 3, 375-83 (1963).
2. R. E. Barlow and A. W. Marshall, "Bounds for Distributions with Monotone Hazard Rate", D1-82-0247, Boeing Scientific Research Laboratories, 1963.
3. R. E. Bariow and A. iV. Marshall, "Tables of Bounds for Distributions with Monotone Hazard Rate", D1-82-0249, Boeing Scientific Research Laboratories, 1963.
4. R. E. Bartow and F. Proechan, "Comparison of Replacement Policies, and Renewal Theory Implications', D1-82-0237, Boeing Scientific Research Laboratories, 1963.
5. R. E. Bariow and F. Proechan, Mathematical Theory of Reliability, John Wiley and Sons, New York, 1964.
6. J. D. Esary and F. Proschan, "Relationship Between System Failure and Component Failure Rates", Technometrics 5, No. 2, 183-9 (1963).
7. R. E. Barlow, A. W. Marshall, and F. Proschan, "Properties of Probability Distributions with Monotone Hazard Rate", Annals of Mathematical Statisticz 34, No. 2, 375-89 (1963).
8. F. Proschan and R. Pyke, Tests for Monotone Failure Rate.

AncP 708-197

CHAPTER 5 SOME ADVAACED MATHEMATICAL TECHMIOUES

50 LIST OF SYMBOLS

$$
\begin{aligned}
n & =\text { number of states } \\
s- & =\text { denotes statiatical definition } \\
S_{1} & =\text { system-state } i \\
t & =\text { time } \\
u & =\text { time at which in-repair unit fails; re- } \\
& \text { generation point } \\
\lambda_{u j} & =\text { transition rate fron } S_{1} \text { to } S
\end{aligned}
$$

5-1 INTRODUCTION

The approach to reliability wherein transition distritutions from one state to another are all general is not tractable, because there are no simple instants of time at which past histury can tee ignored. The best that can be done in the general case is to give a complicated algorithm for calculating probability of transition at any tine. Therefore, everyone uses simplifying assun ptions of some sort. A few of the mathematicil techniques tnat are useful in the simplification process are mentioned here. Ncne were discovered or invented for reliability analysis; they are well-known (to mathematicians) rechniques Refs. 1 and 2 give more details on many of them. Handbooks such as Ret. 6 also show these and other techniques; Ref. 7 is an example of a textbook which teaches some of these techniques.

5-2 MARKOV PROCESSES

There are several kinds and generalizations of Markov processes, ut only the most simple process will be discussed here. For more details, see Refs. 1 and 2 and the Bibliography at the end of Chapter 1.

5-2.1 SYSTEM STATE

The system is presumed to be in one of a set of states and can go from one state to another. The state of a system is a description of its condition. The analyst can choose the way a state is characterized. Consider this example. Suppose a system consists of three subsystems, each of which can be adequataly described by one of the following four condi-
tions: Good, Degraded, Failed waiting for repair, In repair. Further suppose that the state of the system is characterized adequately by giving the states of each of the three subeystems. Then there are $4 \times 4 \times 4=64$ possible states of the system. A state of this system consists of the specification of the states of each of its three subsystems, e.g., Good, In repair, Good. When the state of a subaystem changes, the state of the system will change.

5-2.2 MARKOV CHAINS

Suppose the states of the system are specified, e.g., S_{1}, \ldots, S_{n}, then there are r_{6} states. It is presumed that the probability of going from one state to another depends only on those twC states, and no others; past history is wiped out. For any two states, the transition rate is a constant. The transition rate $\lambda_{1 J}$ from state S_{i} to state S_{j} corresponds to a failure rate for an exponential process in that it is a ratio of a pro hability density function to a Survivor functicn. Many of the λ_{U} for a system are usupliy zero, because certain transitions are not possible, by the very nature of the particular system. In the example in par. 5-2.1, just repaired subsystems might always be Good, never Degraded. Then, a subsystem could never go from "In-repair" to "Degraded", but it could go from "In-repair" to "Good" or from "Degraded" to "In-repair". The $\lambda_{i j}$ car. be put in a matrix form.

Many spesial cases have been worked out in the literature. Refs. 3-5 are likely sources of material.

Considerable simplification of the theory is possible when only the steady-state behavior of the system is of concern, not the transient (start-up) behavior.

In practice, the number of system states must be severely limited in order for the analysis to be tractable.

5-3 LAPLACE TRANSFORMS

The Laplace transform is perhaps the most popular transform for engineers; they use it often in solving differential equations.

The Laplace transform is very closely related to the Laplace-Stieltjes transform and to the Fourier transform. The Moment Generating function and the Characteristic function are also related to the Laplace transform, although statistics texts seem rarely to point this out. (The Characteristic function is, formally, the Fourier tranaform; and the Moment Generating function is, formally, the Laplace transform.) The Stieltjes form of the Laplace transform has fewer difficulties with "existence" than does the Laplace transform, although in practical reliability work, "existence" of integrals and pdf's is rarely a difficulty. In the remaining discussion, the phrase, Laplace transform, includes all the related transforms and functions.

The Laplace transform changes differentiation and integration into multiplication and division by the transform-variable. In reliability analysis, another of its properties is even more important. The Laplace transform of the sum of several s-independent random variables is the product of the individual Laplace transforms of the random variables. Thus convolution is transformed to multiplication.

When the equations of the system are expressed in Laplace transforms, the steady state ($t \rightarrow \infty$) behavior can be found easily without inverting the transforms.

The Laplace transform of the answer in a reliability problem often can be obtained in a closed form, albeit usually unwieldy. The difficulty arises because inversion is rarely feasible in closed form; then numerical inversion must be used.

5-4 REGENERATION POINTS

The big advantage of assumir.g constant transtion rates, is that every time-instant is a
reprneratisn (renewal) poini. Statistically r. the system (when in a particular a no memory as to s.ow long it has bet.. Ω that state; each instant is just like every other instant.

If general statistical distributions are used, this is no longer simply the case. The trick in an analysis is to find (or invent) some time instants which have this regeneration property; once you know that the system is at this time instant, its past history can be forgotten. One way of finding suitable regeneration points is to introduce an extra time variable to help describe the state of the system.

For example, suppoze a system of two units is in one of the following three states:

1. One unit operating, other in-standby
2. One unit operating, other in-repair
3. One unit in-repair, other waiting-forrepair.

The unit is in state two at time $=t$; introduce the time $=u$ at which the in-repair unit fails; at time $=0$ the operating unit was put into operation. With u as an extra variable, time $=u$ is a regeneration point; the state probabilities do not depend upon the history of the system prior to u.

Of course, the introduction of extra variables complicates the analysis, but, at least, some equations can be written down. This supplementary variable technique is used in the literature, e.g., Ref. 5, in order to "solve" reliability problems where random variables have unspecified distributions. Virtually all problems when stated this way will involve the sums of s-independent random vanables; so Laplace transforms will ordinarily be used in the solution of the proilem (see par. 5-3).

Ref. 7 discusses renewal theory in detail.

REFERENCES

1. DA Pam 70-5, Mathematics of Militcry Action, Operations and Systems,
2. M. L. Shooman, Probabilistic Reliability, McGraw-Hill Book Company, Inc., N.Y., 1968.
3. Gnedenko, Belyayev, and Solovy:2v, Mathematical Methods of Reliability Theory, Academic Press, N.Y., 1969.
1a. Proceedings of the Annual Symposia on Reliability, 1966-1971.

4b. Proccedings of the Annual Reliability and Maintainability Symposia, 1972 present.
5. IEEE Transactıons on Reliability.
6. G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, Inc., N.Y., 1968.
7. W. Feller, An Introduction to Probability Theory and its Applications, Vols. I, II, John Wiley \& Sons, Inc., N.Y.; Vol. I, 1968, Vol. II, 1966.

CHAPTER 6 CREATING THE SYSTEM RELIABILITY MODEL

6.0 LIST OF SYMBOLS

$$
\begin{aligned}
& \text { k-out-of-r: } F=\text { special kind of system, } \\
& \text { see par. 6-3.2 } \\
& k \text {-out-of-n:G }=\text { special kind of system, } \\
& \text { see par. 6-3.2 } \\
& \begin{aligned}
k \text {-out-of-n:G }= & \text { special kind } \\
& \text { see par. } 6-3.2
\end{aligned} \\
& M T F=\text { Mean Time to Failure } \\
& \text { MTBF = Mean Time Between } \\
& \text { Failures } \\
& \text { nition } \\
& X, Y, Z, A, B, S, \ldots=\text { events or elements on a } \\
& \text { dependency diagram }
\end{aligned}
$$

$$
\begin{aligned}
& \text { is any event } \\
& \begin{array}{l}
\text { not } \Psi \text { complement of } \\
\Psi ; \Psi \text { is any event or }
\end{array} \\
& \text { set } \\
& \text { AND, OR = logical operators (AND } \\
& \Delta, \nabla, 0, \square=\text { symbolic elements for } \\
& \text { see par. 6-2.3.1 }
\end{aligned}
$$

6-1 INTRODUCTION

In order to compute the reliability measures of a system, it is necessary to develop a reliability model of the system. A reliability model consists of some combination of a reliability block diagram or Cause-Consequence chart, a definition of all equipment failure and repair distributions, a definition of the up-state rules, and a statement of spares and repair strategies. This chapter is written from the point of view of reliability diagrams, because historically the material has been presented that way.

A reliability block diagram is obtained from a careful analysis of the manner in which the system operates, i.e., the effects on overall system performance of failures of the various parts that make up the system; the support environment and constraints, includ-- ing suck factors as the number and assignment of spare parts and repairmen; and the mission. Careful consideration of these factors yields a
set of rules (which will be referred to as "upstate rules") which define satisfactory operation of the system (system up) and unsatisfactory operation (system down), as well as the various ways in which these can be achieved. If a system operates in more than one mode, a separate reliability diagram must be developed for each one (Refs. 1 and 2).

A considerable amount of engineering analysis must be performed in order to develop a reliability model. The engineer proceeds as follows.
(1) Develop a functional block diagram of the system based on his knowledge of the physical principles governing system operation and behavior.
(2) Deyelop the logical and topological relationships between functional elements of the system.
(3) Use the results of performance evaluation studies to determine the extent that the systein can operate in a degraded state. This information might be provided by outside sources.
(4) Define the spares and repair strategies (for maintained systems). The spares strategy defines the spares allocated to the system and, in the case of multiple failures, defines the order in which spares are to be used. The repair strategies define the number of repairmen and the order in which they are to be used in the case of multiple failures.

This chapter presents a description of the engineering analysis procedures, mathematical block-diagramming techniques, and other procedures used to construct reliability models.

6-2 ENGINEERING ANALYSIS

6-2.1 INTRODUCTION

Before the reliability model can be constructed, the system must be analyzed. A functional block diagram and a dependency diagram, which define the logical and topological relationships between function,al elements and their inputs and outputs, must be developed. These diagrams can be developed for electrical, electromechanical, and mechanical
systems - the underlying principles are the same for all (Refs. 2 and 3).

Basically, the functional block diagram must contain the following items:

1. A clear identification of all functions and repetitive functions.
2. Input-output relationships between functions. For electronic systems, this takes the form of signal flow from input to output. Usual and alternate modes must be shown.
3. A clear indication of where power supplies or power sources are apphed to the system.
4. D-scription of switching arrangements and the sequence in which alternate modes are used.

The dependency diagram schematically represents the logical interdependencies of the functional elements of the system and illustrates step-by-step how an input is processed to produce the output signal or mechanical action (Refs. 2 and 4).

Notes and attachments can be used to provide more detailed information on a specific system than can be portrayed directly on the dependency diagram. An alphameric code ought to be established which correlates the dependency diagram with the functional biock diagram.

The reliability block diagram for the case of reliability without repair can be derived directly from the dependency diagram using the techniques of Boolean algebra. For repairable systems, simple modifications that describe the spares and repair strategies must be made to the basic block diagram.

6-2.2 FUNCTIONAL BLOCK DIAGRAMS

Functional block diagrams must be developed tr provide descriptive coverage from system to subassembly levels. The information contained in thern and in the detailed circuit and mechanical descriptions of the system can be used to develop a reliability model. The functional block diagrams, circuit diagrams, mechanical descriptions, dependency diagrams, and reliability block diagrams are related by means of an alphameric coding scheme.

Notes and attachments to the functional * block diagrams must (1) prowide moredetailed information than can be portrayed directly on the functional block diagrams, and (2) describe functional relationships whose complexity precludes direct listing. Typical attachments to the functional block diagrams include timing diagrams, switching rules, and descriptions of complex interconnections between functions.

Several levels of functional block diagram might be required. System-level functional block diagrams show the relative locations of the highest level functional elements in the system, their interconnections, relation to the external environment, power levels, and points of access to external systems. Basic system mechanical layout information (such as physical boundaries) is superimposed on the system functional block diagram.

Depending on the system being described, several levels of intermediate functional block diagrams might be required. The intermedi-ate-level functional block diagrams are identical in structure and format to the system diagrams, but describe the system in greater detail. When basic equipment layout information is available, it is supe mposed on the in-termediate-level block diagrams.

Many systems require several levels of mechanical descriptions. At the overall coverage level, gross physical details are superimposed on the system block diagıam. At intermediate levels, more-detailed physical features are defined. This is important because hardware boundaries are needed to specify equipment configurations for which reliability must be computed. The definition of physical configuration is important when repairade systems are being analyzed because the repair times are a function of accessibility and ease of handling, which are physically related parameters.

The structure of the functional block diagrams and the physical descriptions depend on the system. A tank, for example, has a very well-defined physical structure and functional block diagram. On the other hand, a tropospheric-scatter communications system has large, interconnected units dispersed over a site area.

6-2.2.1 Discrete $\mathbf{~ J y s t e m s ~}$

A discrete system has precisely defined mechanical and electrical boundaries, and it occupies a limited, well-defined volume. Examples of such systems are rifles, artillery projectiles, tanks, and heicopters. A functionai and mechanical description of a discrete system usually can be prepared in a straightforward manner. The reliability block diagrams usually are derivable readily from the descriptions.

A traditional radio receiver is an example of a simple discrete system; see Fig. 6-1 (Ref. 5). The cystem-level functional block diagram describes the functional elements of the system and defines the signal flow and interconnections between the functional elements. All functio sal blocks are numbered and are keyed to the blocks of the reliability model.

A more complex discrete system is the infrared (IR) camera in Fig. 6-2 (Ref. 6). This system contains mechanical, optical, and electrical subsystems. These subsystems can be completely described by functional block diagrams of different levels of complexity. For example, the mirrors can be described by a single level block diagram, while the IR detector may require several levels of functional block diagrams and detailed circuit schematics for a complete description.

A tank is an example of an even more complex discrete system; it contains mechani-
cal, electromechanical, and electronic components and subsystems. Because of the way a tank is structured, a simple functional block diagram which places the functions in a simple geometrical order with a signal flow from input to output cannot be drawn. The sys-tem-level block diagram of a main battle tank is shown in Fig. 6-3 (Ref. 7).

6-2.2.2 Dispersed Systems

In a dispersed system the components are dispersed over an area and often fit together in a complicated way that requires multiplexing of signal paths and feedback. It may be difficult to describe such a system with a single set of functional block diagrams; a more complex representation might be required.

A tropospheric-scatter system is a good example of a dispersed system (Ref. 8). Tropospheric-scatter transmission systems are used to extend line of sight communication systems by using atmospheric refraction to transmit ligh-frequency waves beyond the horizon. Direct transmission between two terminal stations located beyond the optical horizon is obtained by the scattering properties of the troposphere. Since the transmission properties of the atmosphere randomly fluctuate, many properties of a troposphericscatter system are statistical. This complicates the functional description of the system be-

FIGURE 6-1. Radio Receiver Functional Block Diagrams

FIGURE 6-2. Infrared Camera Functional Block Diagram ${ }^{6}$
cause the properties of the transmission path, which is external to the system hardware, affect system reliability. Therefore, the transmission medium also must be described in the system functional block diagram.

A summary of the items making up a tropospheric-scatter system functional description follows:

1. Geographical deployment plan
2. Station layout plan
3. System layout plan
4. Shelter layout plan
5. Antenna layout plan
6. Channeling plan
7. Frequency allocations plan
8. Equipment lists
9. Tabulation of system and equipment characteristics
10. Functional block diagrams of equipment and systems at each station
11. Signal dependency diagrams
12. System interface diagrams
13. Individual functional block dingrams.

The reliability model for this system is very complex. Several reliability models will be required to compute system reliability and the reliability of individual equipments.

A System Layout Plan and an Equipment Functional Diagram for one station are described in Figs. 6-4 and 6-5.

6-2.3 DEPENDENCY DIAGRANS

6-2.3.1 Definition of Terms

A dependency diagram pictorially defines the logical, electrical, and topological interrelationships between the events and functional elements in a system (Refs. 2 and 4). The terms used in the previous sentence are defined as follows:

1. The logical interrelationships between functional elements are the rules governing the interplay between input and output signals or forces. These rules can best be expressed by Boolean equations.
2. The electrical interrelationships describe the flow of electrical energy between functions. A good example is a traditional signal flow diagram.
3. The topological relationships express the geometric structure of the system. This is very important because, frequently, the components comprising a function are physically located in different parts of the system, even in different equipment cabinets. Therefore, the system geometry must be carefully defined.

The dependency diagrams can be very helpful in deriving reliability block diagrams. A reliability model for reliability without repair can be derived directly from these diagrams using Boolean algebra techniques. In simple systems, ordinary functional diagrams are sufficient to derive the reliability model. The dependency diagram can become very complex for large systerns. Therefore, it should be constructed at a system level which permits the reliability model to be derived but does not expand the diagram to the point where it becomes cumbersome to use. A dependency diagram would never be drawn at the circuit schematic level, for example. The dependency diagram requires standard formatting rules, which minimize the chance of error when deriving the reliability model

6-2.3.2 Standard Formatting Rules

A standard set of dependency-diagram

AncP 708.197

formatting rules is required to show unambiguously the logical relations between system functions. (This entire subparagraph is adapted from Refs. 2 and 4.) To be useful, the formatting rules should be uniform, i.e., the same set of symbols and rules must be usable at all levels of system disclosure.

The basic symbolic elements of the dependency diagram are described:
Δ or ∇ The triangle indicates the existence of a dependency on another event. The apex of the triangle points toward the event which is depended upon.

- The circle placed on a dependency line (in a particular column) indicates the existence of functional element represented by that column.
- The square represents an event or multiplicity of events (action or available output) which results from the proper operation of a specific group of functional elements and the availability of specific events.

By use of these basic symbols, a dependency diagram can be developed. The dependency diagram symbolically illustrates the interdependencies between the functional elements and events in the system. The dependency diagram maps the functional interactions of a system is.to a dependency structure.

In addition to the basic symbols, the dependency diagram also makes use of:

1. Event entries (headings)
2. Functional element entries (headings)
3. Data rows
4. Notes and signal specifications
5. Procedure column.

All of these contain information which is useful for the generation of reliability models.

The column headings list the name and location of all events and functional elements associated with the dependency diagram. Each event and functional element is identified by means of an alphameric code.

The event entries can indicate:

1. Inputs from external equipment
2. Important internal events
3. Outputs to external equipment
4. Terminal events such as outputs from recorder, PPI scope, or hesdphone set.

If the events are to be observed, such as at tent points, the point of observation is indicated in the event entry column. If events are to be measured, the points of measurement are indicated. Specifications or descriptions for the event are referenced by a number located in a box at the base of the column heading. The physical location of each functional element and event is identified at the top of each column. The combinatorial rules governing groups of events and functional elements can be summarized in the headings.

A set of standard interpreting rules for logical, mechanical, electrical, and topological interrelationships between functional elements and events in a system must be used in the dependency diagram. The distinction between topological, electrical, logical, and mechanical considerations is crucial in the formatting of complex systems.

Topological relationships depict the physical interconnections between functional elements. Electrical interrelationships indicate functional signal processing interactions between elements. Logical dependencies indicate the Boolean relationships among functional elements. Mechanical dependencies indicate mechanical interactions between elements in a mechanical system.

The three basic symbols (triangle, circle, square) are combined in various ways to form the dependency structure. The resultant event and the functional elements and dependencies upon which it depends are connected by means of the horizontal dependency lines.

There are nine standard rules for interpreting ihe structure of the dependency chart for reliability model derivation, i.e.,

1. Ii a circle (functional element) appears in a specific column several times, it represents only one physical entity.
2. Only AND dependencies can be depicted on a single dependency line.
3. Output events dependent upon a specific functional element are placed to the right of the symbol representing that clement. Input events to that element appear to the left of the element.
4. Both logical (in the Boolean sense) AND and OR dependencies can be represented in the vertical direction.
5. The vertical lines demarking the columns delimit physical bounds on the functional (electrical and mechanical) interdependencies. Several event boxes labeled separately and drawn in the same vertical column represent a group of signals which enter the same physical term nal. If the events aze drawn one each in a group of adjacent columns, they represent signals that enter different physical terminals of the same functional element.
6. If separately labeled events are drawn in the same col 1 mr and a dependency triangle is placed under each, the events represent electrically (or mechanically) distinct signals, even though they may be impored at the same physical point. (Distinct signals or forces are separated by time as well as frequency.) If a single dependency triangle is placed under the group of events, they are electrically (mechanically) similar.
7. A plus sign (+) on the dependency diagram indicates that some group of functional elements and events are related in a logical OR fashion.
8. A small circle ((0) or dot placed on the dependency diagram above the square representing an event indicates that the functional elements providing inputs to that event are related in a logical AND fashion.
9. Dummy Events: If groups of events are related in a complex manner that is difficult to describe using the listed rules, or if the resulting descriptions are ambiguous, a
dummy eveni can be used. All of the event outputs feed as inputs to the dummy event. The Boolean relation or logical rule governing the interaction betwren the elements is stated in the column heiding above the dummy event and just above the box reprementing the event.

These rules eatablish the dependency diagram as a device for describing the topological, mechanical, logical, and electrical relationshipe which govern the iperation of a system. A number of examples preserited to illustrate the application of these rules follow:
A. Simple Series Dependency. The simple series dependency for a aingle functional element is shown in Fig. 6-6. The small circle above the square (which represents the Z output) indicates an AND series relationship between X, Y, and Z. This representation may be extrapolated to a group of series functional elements.
B. Parallel Inputs (Figs. 6-7 through 6-10). Several possible combinations can occur. The events A_{1}, A_{2}, and A_{7} enter functional block S through the same terminal or different terminals, they are electrically (mechanically) similar or electrically (mechanically) different, and the event A_{4}, depends upon A_{1}, A_{2}, and A_{8} in a logical AND or logical OR feshion. Eight different dependency diagrams can be drawn.

1. Identical Inputs, Same Terminal, AND Dependency (Fig. 6-7). Standard rules $2,3,5,6,8$, and 9 apply.

FIGURE 6-6. Simple Serios Dependency ${ }^{2}$

FIGURE 6-7. Identical Eloctrical Signals, Same Terminal,
AND Dependency ${ }^{2}$

SYSTEM

DEPENDENCY DIAGRAI.

$$
\bar{A}_{i}=" \operatorname{not} A_{i} "
$$

FIGURE 6-8. Identical Electrical Signals, Different Terminal, AND Dependency ${ }^{2}$

SYSTEM

DERENDENCY DIAGRAM

FIGURE 6.9. Different Electrical Signals, Same Terminal, AND Dapendency ${ }^{2}$

FIGURE 6.10. Different Physical Termirals, Electrically Different Signals, AND Dependency ${ }^{2}$
2. Identical Inputs, Same Terminal, OR Dependency. According to Rule 7, a (+) sign would be placed above the A_{3} box because of the OR dependency. If the logical rule were combinatorial, the statement $m(n)$, meaning m of n, would be placed next to this (+) sign.
3. Identical inputk, Different Terminale, AND Dependency (Fig. 6-3). Standard rules $1,3,4,5,6,8$, and 9 apply.
4. Identical Inputa Different Terminale, OR Dependency. An OR sign (+) would be placed above \mathbf{A}_{4} by Rules 7 and 4 .
5. Different Inputs, Same Terminal, AND Dependency (Fig. 6-9). Signals A_{1}, A_{2}, and A_{s} are different electrically (frequency or time wise). Rules 1, 2, 3, 5, and 6 apply.
6. Different Inputs, Same Terminal, OR Dependency. An OR sign (+) would be placed above A_{4} by Rules 7 and 4.
7. Different Physical Terminal, Different Inputs, AND Dependency (Fig. 6-10). A_{1}, A_{2}, and A_{2} are different.
8. Different Physical Terminal, Different Inputs, OR Dependency. An OR symbol would be placed above A_{4}.
C. Large Numbers of Functional Branches in Paralle! (Contractions). In this situation, a functional element B interfaces with N parallel branches, consisting of M elements in series (Fig. 6-11(A)). The format of the dependency diagram depends on whether or not the branches are identical and whether or not the functional elements within each branch are identical. Several cases must be considered:

1. All MN functional elements are different.
2. All elements in a given branch are identical, but each branch is different.
3. All elements in a given branch are different, but each parallel branch is the same.
4. All elements are identical.

Under certain circumstances, when large numbers of elements are involved, contractions can be used to simplify the dependency diagram. Examples follow:

Case 1: All MN elrments are different. No contractions are possible.

Case 2: All elements in a given branch are identical, but each branch is different. The
branch can be contracted by means of a multipie column contraction, Fig. 6-11(B). E reprements a functional block composer of F, \mathbf{G}, and \mathbf{H} in series. E and its composition are described in the column heating. The resultant dependency diagram is Fig. 6-11(C).

Case 3: All elements in a particular branch are different, but all branches are identical. The multiple row contraction can be used, but not the multiple column contraction.

Case 4: All elements in all rows are identical. A further contraction is possible. This is called the multiple row contraction and is illustrated in Fig. 6-11(D). The N in the lower right hand comer of the event box indicates the number of parallel branches that are represented. This contraction is only possible when all the D_{N} outputs are impressed upon a single functional entity.

6-2.3.3 Exarnples

Several examples illustrate the wide variety of systems whose operation can be represented by dependency diagrams:

1. A simplified tropospheric-scatter system (electronic)
2. A relay (electromechanical)
3. A packaged speed reducer (mechanical).
A block diagram and dependency chart are given for each system.
A. A Simplified Tropospheric Scatter System (Electronic). The functional block diagram of the receive functions of a tropospheric scatter system is given in Fig. 6-12 and its dependency diagram in Fig. 6-13 (Refs. 2 and 8). The dependency diagram is drawn at the system level for simplicity. Diagrams also can be drawn for each of the functions. The functional block diagram is only one of the several descriptive techniques required for a tropospheric scatter system; however, a detailed system description which includes geographical deployment plan, station, layout plan, system layout plan, etc., is not presented here.
B. A Relay (Electromecharical). The functional block diagram of a relay is shown in Fig. 6-14 and its dependency diagram is shown in Fig. 6.15 (Refs. 2 and 9). The relay

```
AMCP 706-197
```


FIGURE 6-12. Power Supply Section of Tropspheric Scatter System Receive Function ${ }^{2}$

COMBINER SECTION OF RECEIVER TERMINAL EQUIPMEA

FIGURE 6.12. Block Diagram of Tropospheric Scatter System Receive Functions ${ }^{2}$ (cont'd)

Sive Functions ${ }^{2}$ (cont'd)

FIGURE 6-13. Dependency Chart for Trodosnheric Scater System ${ }^{2}$

FIGURE 6-13. Dependency Chart for Tropospheric Scatter System ${ }^{2}$ (cont'd)

FIGURE 6-14. Functional Diggram of a Relay ${ }^{9}$
dependencv diagram describes an action-at-adistance force, the electromagnetic field, and the mechanical action of the contacts. The dependency structure readily can be used to represent mechanical and action-at-a-distance forces and can, therefore, be used to describe a wide variety of systems.
C. A Packaged Speed Reducer (Mechanical). A packaged speed reducer is an example of a mechanical system (Ref. 10). Packaged speed reducers are sperd reduction gear trains that are assembled at the factory. Their use as off-the-shelf units results in considerable savings of time and money. The cutput, in this case, is a rotation of the output shaft. The output speed of rotation is related in an exact way to the speed of rotation of the input shaft by the gear arrangement. A packaged speed reducer is shown in Fig. 6-16 and its dependency diagram in Fig. 6-17.

63 DEVELOPMENT OF RELIABILITY MODELS

6-3.1 INTRODUCTION

The development of a relability mothe is
a complex process which involves the structure of the system, up-state rules, the paramet.r.r to be computed, the computation me..iod, and the repair and spares strategies. As a result of these interactions, the reliability model is not a fixed entity, even for a specific system. Specifically, a reliability model consists of some or all of the following:

1. Reliability block diagram(s)
2. Definition of the up-state rules
3. Failure and repair rates of all furictional elements
4. Definition of repair strategies
5. Definition of spares allocation and strategies.

The manner in which a reliability model can be structured is discussed in detail in the paragraphs that follow.

6-3.2 DEFINITIONS

Before proceeding with a detailed discussion of the derivation of reliability models, mathematical definitions of reliability without repair, reliability with repair, instantaneous availability, steady state availability, and mean time to failure (MTF) must be developed. These definitions are presented along with several other useful definitions, as adapted from Ref. 2.

1. Reliability Withcut Repair. The s-reliability without repair at time t is defined as the probability that the system will not fail (will perform satisfactorily) before time t, assuining that all components are good at $t=0$ (the beginning of the rission). The s-reliability vs time curve has a value of 1 at $t=0$ and monotonically decreases for increasing values of t.
2. Reliability Witn Repair. The s-reliability with repair of a system is defined as the probability that the system will not fail before time t, given thac all components are good at $t=0$, but v ith the provision that redundant items whioh fail are repaired. For a 1 -unit system or a system made up of units in sarnes, tha s-reliability with repair is the same as reiiability withou' repair, since the failure of che unit is considered as a system failure and, by definition of s-reliabilty, the system

FIGURE 6.15. Relay Dependency Liagram

Copyrighted by MicGraw-Hill Book Co., Inc., 1966. Reprinted from Machine Devices and Instrumentation with permission.
is not permitted to go from a down-state to an up-state. The s-reliability with repair as a function of time begins at 1 for $t \because 0$ and monotonically decreases. The shape of this curve is determined by the failure and repair distributions of the individual items as well as additional constraints on repairmen and/or spares.
3. Instantaneous Availability. The instantaneous availability of a system is defined as the probability that the system is up at the instant t, given that all components are good at $t=0$. This means that the system could have failed and been restored many times during the interval from 0 to t. It also

FIGURE 6-17. Packaged Speed Reducer Dependency Diagram
means that if repair is not allowed to take place on any of the items, the instantaneous availability is equal to the reliability without repair, because the only way the system could be up at the instant t under these circumstances is for the system to be up at $t=0$ and remain up until t. The shape of the instantaneous availability curve depends on the types of failure and repair distributions the lowest level items are ass λ ined to have.
4. Stead?-state Availability. The steady-state ar ailability of a system is the asymptotic value of the instantaneous availability and is defined as the probability that the system is up at any given point in time (but after a sufficiently long time so that
steady-state is achieved). 'The steady-state availability is a constant and is not a function of time. Under the assumption of exponentially distributed times to failure and times to repair, the instantaneous availability monotonically decreases from a value of 1 to the steady-state availability and hence the steadystate availability under these circumstances is well defined and can be found readily.
5. Mean Time to Failure (MTF). The MTF of a system is defined as the mean time to system failure. This definition is valid for nonrepairable systems and for repairable systems. The MTF can be obtained by integrating the reliability function (without repair or with repair) from 0 to ∞, assuming that the
integral exists. In this concept, once the system fails, it is dead and cannot be repaired.

It is important not to confuse the MTF with the MTBF (mean time between failures). MTBF may not be a workable concept for a particular system ar. 1 may not be readily computed for complex repairable systems. For piece parts which are discarded after failure or for items that are restored to their original conditions and used as new spares, MTF is the appropriate concept.
6. Equipment. The term equipment will be used to designate an element of a system whose failure and repair characteristics are considered as those of a unit and not as a collection of smaller elements.
7. a. Up. An equipment or system is up if it is capable of performing its function.
b. Degraded. An equipment or system is degraded if it performs its function, but not well.
8. Down. An equipment or system is down if it is incapable of performing its function.
9. Design Redundancy. A system has design redundancy with respect to a given set of equipments if the system is up with only a part of the set in operation, i.e., the extra equipments are solely for the purpose of improving the reliability and availability characteristics of the system.
10. On. An equipment which is up and in operation is on.
11. Idle. An equipment which is up and not in operation, i.e., being held in standby is idle.
12. Block. A Block is a grouping of n identical equipments. The reliability of the grouping depends only on the number of equipments which are up in the block and not on which equipments in the block are up.
13. Sections. A Section is an s-independent grouping of equipments within a system. A system is divided into sections when the number of system up-states is so large that computer calculations are difficult. For example, calculation of system MTF with repair requires an inversion of the state matrix. If the computer available to the analyst cannot
handle a matrix, the analyst must subdivide the syatem into two or more separate sections and compute s-reliability with repair for each. The system s-reliability with repair is the product of the section s-reliabilities; the MTF is computed by numerically integrating the system s-reliability.
14. A k-out-of-n:G-system has n components and is Good (up) if and only if at least k of them are Good (up).
15. A k-out-of-n:F-system has n components and is Failed (down) if and only if at least \boldsymbol{k} of them are Failed (down).

6-3.3 DERIVATION OF A RELIABILITY DIAGRAM

The process of deriving a reliability block diagram (for 8 -reliability without repair) from a detailed system description is a complex process that involves many factors. This process must be analyzed to establish standardized procedures which form the basis of a formal mathematical technique. The analysis, using a part of a tropospheric scatter system, is described in the paragraphs that follow (Ref. 2).

Fig. 6-12 illustrates the equipment configuration for the receive function of a tropospheric station. Fig. 6-13 is the dependency diagram and Fig. 6-18 is the reliability diagram for the system in the particular mode being analyzed. The tropospheric system is complex and can operate in several modes. Each mode has a different reliability diagram. The possible modes are:

1. Voice Set Group output consists of outputs from 14 to 24 physically available channels of which nine or more must be up. (This statement on the dependency diagram implies two reliability diagrams.) If more than nine Voice Sets are up, the reliability diagram shows them in parallel. If nine Voice Sets are up, the reliability diagram shows them in series.
2. The output from any specific voice set functionally depends on that particular voice set AND on the output from any of the 24 Channel Filter outputs AND on the output from "Engine Generator Set 1 OR Engine Generator Set 2". (The parallel group of

AncP 708-197

Voice Sets is in series with the parallel croup of Channel Filters and the parallel group of Engine Generator Sets.)
3. The Channel Filter outputs functionally depend on the corresponding Channel Piters AND on the Demodulator (via the Demodulator output) AND on the output from "Generator Set 1 OR Generator Set 2". (The parallel group of Channel Fitters is in series with the Demodulator and the parallel group of Engine Generator Sets 1 and 2.)
4. The Demodulator output depends on the Demodulator Function AND on the Combiner series circuit output. The Combiner tstal output consists of an output via "Combintr Gain 1 AND 2" OR "Combiner Gain 3 AND 4". Both outputs via "Combiner Gain 1 AND 2" OR "Comioiner Gain 3 AND 4" functionally depend on the Combiner series circuits (AGC and Summing Network) and Combiner Gain 1 AND 2 AND 3 AND 4, respectively. On the reliability diagram, the Demodulator is in series with the AGC and Summing Network which are in turn in series with Gain 1 AND 2 in parallel with Gain 3 AND 4.
5. Examination of the dependency diagram from this point to the system input reveals two chains of simple AND dependencies which are in parallel with each other. The first series chain consists of:
a. Received wave 1 (horizontal AND :ertical component)
b. Antenna 1 (horizontal AND vertical feed)
c. Duplexer 1
d. Full polarization diversity, full space diversity ${ }^{1}$
e. Full polarization diversity and degraded space diversity
f. Degraded polarization diversity and full space diversity

[^3]g. Degraded polanzation diversity and degraded space diversity.
Each of these modes can operate with or without Orderwire ${ }^{2}$. In this example, the cave of full polarization diversity and degraded space diversity with up Orderwire is considered.

The reliability diagram can be derived from a simple set of logical statements im. plied directly by the dependency diagram. The set of logical statements follows and the effect on the reliability diagram is given in parentheses:

1. System output consists of output from Orderwire circuits and Voice Set Groups. (Orderwire circuits AND Voice Set Groups are in series.)
2. Orderwire output functionally depends on Orderwire circuits AND Service Channel Line Equipment output AND Demodulator circuit output AND ouptut from "Generator 1 OR Generator 2". (Orderwire tircuits are in series with Service Channel Line "quipment and Demodulator and the parshl: group of Generator Set 1 and 2.)

E, The Voice Set Group output depends oi. .ie outputs from any of the Channel Fil$6: \%$, the Demodulator, Summing Network, A. C C Network, and the output from either of the Receive Channels. The Receive Channels each consist of a series grouping of functions. Receive Channel 1 consists of:
a. Received Wave 1 (horizontal AND vertical component)
b. Antenna 1 (horizontal AND vertical feed)
c. Duplexer 1
d. Front-end 1
e. Front-end 2
f. Receiver 1
g. Receiver 2
h. Combiner Gain 1 AND 2.

The second Receive Channel consists of:
a. Received Wave 2 (horizontal AND vertical component)
b. Antenna 2 (horizontal AND vertical feed)

[^4]

DOWN STATE DEFINITION

FIGURE 6-19. Reliability Diagram, Tropospheric Scatter System Receive Mode, Full Polarization and Degraded Space Diversity

STATE DEFINITION
*mama or 10 + ING CHANNELS tuding oldea The neculato

c. Duplexer 2
d. Front-end 3
e. Front-end 4
f. Receiver 3
g. Receiver 4.
(The Channel Filters are in parallel. This parallel grouping is in series with the Demociulator, Summing Networis, and AGC Network. These, in turn, are in series with the parallel combination of two Receive Channels.)
4. These two series chains of functions are in series with the output from Engine Generaior Set 1 OR 2. (The parallei combination of Engine Generator Set 1 AND 2 is in series with the rest of the system.)

This analygis illustrutes that the information contained in the cupendency diagram can be used to derive a reliability block diagram for the case of s-reliability without repair. To summarize the previous discussions, the minimum information elements required for deriving a rel ablity block diagram are:

1. A dependency chart that clearly indicates the interdependencies between functional elements and events
2. A quantified definition of the system output
3. A statement of rules defining the system up-state.

-3.4 MATHEMATICAL DERIVATION OF A RELIABILITY DIAGRAM

6-3.4.1 Basic Concepts

In this paragraph a simple example of how a ze!iability block diagram can be derived from a dependency diagram is presented.

Consider the dependency diagram in Fig. 6-19. A Boolean equation (Ref. 11) for each dependency line can be written as follows:

$$
\begin{align*}
A N S & =Z_{1}+Z_{2} \tag{6.1}\\
Z_{1} & =A \cdot K \\
Z_{2} & =Z_{3} \cdot C \\
Z_{3} & =Z_{4} \cdot A \tag{6-2}\\
Z_{4} & =C+Z_{5} \\
Z_{5} & =P \cdot Q
\end{align*}
$$

By means of a series of substitutions, a Boclean function for the system can be generated in terms of its equipments. The steps are:

$$
\begin{align*}
A N S & =A \cdot K+Z_{3} \cdot B \\
& =A \cdot K+\left(Z_{4} \cdot A\right) \cdot B \\
& =A \cdot K+\left[\left(C+Z_{5}\right) \cdot A\right] \cdot B \tag{6-3}\\
& =A \cdot K+[(C+P \cdot Q) \cdot A] \cdot B \\
& =A \cdot K+B \cdot[4 \cdot(C+P \cdot Q)]
\end{align*}
$$

This function, when properly simplified ad factored, forms the basis for the reliability block diagram. The factored form is:
$A N S=A \cdot[K+B \cdot(C+P \cdot Q)]$

FIGURE 6-19. Simpla Dependency Chart ${ }^{2}$
which is obtained by factoring A. The reliability block diagram corresponding to thi tree is shown in Fig. 6-20.

6-3.1.2 A Complex Example

This paragraph explains in detail how a reliability model can be generated for a complex system for the case of 8 -reliability without repair; it is adapted from Ref. 2. The system to be considered is the tropospheric scatter communications system described previously (Fig. 6-12).

The reliability model can be generated by writing a Boolean expression for each dependency line. For example, if the dependency line shows that Z depends on A AND B, the Boolean equation is $Z=A \cdot B$; similarly, if Z depends on A OR B, then the Boolean equation is $Z=A+B$. This notation is used rather than \cap (AND) and \cup (OR) in deference to considerable custom in writing Boolean expressions.

In the tropo system, the parallel series structure shown in Fig. 6-21 occurs. The items $C_{1}, C_{2}, C_{3}, \ldots, C_{24}$ are identical and in parallel; normally only 14 out of the 24 items are in operation, the remaining 10 being
in standby. This situation also applies to the $D_{1}, D_{2}, \ldots, D_{24}$ items. The output $C^{\prime \prime}$ is up when 9 out of $14 C$ items are up and $D^{\prime \prime}$ is up. The output $D^{\prime \prime}$ is up when 9 out of $14 D$ items are up.

The Boolean statements for the tropo system are listed. The symbol PS is a code for parallel-series function and the statement 9 (14) represents the up-state definition for " 9 -out-of-14". The unprimed terms represent equipnents, and the primed terms represent outputs, which will be eliminated as the expression for system output is developed. The following general equations can be written for the parallel grouping of C and D :

$$
\begin{align*}
C^{\prime \prime} & =\operatorname{PS}\left(C_{(j)}^{\prime}, \mathrm{j}=1,24\right), 9(14) \tag{6-5}\\
D^{\prime \prime} & =\operatorname{PS}\left(D_{(j)}^{\prime}, \mathrm{j}=1,24\right), 9(14) \tag{6-6}\\
C_{(j)}^{\prime} & =C_{(j)} \cdot D_{(j)}^{\prime} \cdot P^{\prime} \tag{6-7}\\
D_{(j)}^{\prime} & =D_{(j)} \cdot E^{\prime} \cdot P^{\prime} \tag{6-8}
\end{align*}
$$

where E^{\prime} represents the Demodulator output and P^{\prime} represents the Power Supply output.

The Boolean equations for the tropo system (Fig. 6-13) are derived in the following manner:

$$
\begin{align*}
& Z^{\prime}=A^{\prime} \cdot C^{\prime \prime} \tag{6-9}\\
& A^{\prime}=A \cdot B^{\prime} \cdot P^{\prime} \tag{6-10}
\end{align*}
$$

FIGURE 6-21. Troposoheric Scatter System Para/fel Items 2

$$
\begin{align*}
& \boldsymbol{B}^{\prime}=\boldsymbol{B} \cdot \boldsymbol{E}^{\prime} \cdot \boldsymbol{P}^{\prime} \tag{6-11}\\
& C^{\prime \prime}=\operatorname{PS}\left(C_{(j)}^{\prime}, j=1,24\right), 9(14) \tag{6-12}\\
& C_{(j)}^{\prime}=C_{(\jmath)} \cdot D_{(\jmath)}^{\prime} \cdot P^{\prime} \tag{6-13}\\
& D^{\prime \prime}=\operatorname{PS}\left(D_{(J)}^{\prime}, j=1,24\right) 9(14) \tag{6-14}\\
& D_{(j)}^{\prime}=D_{(j)} \cdot E^{\prime} \cdot P^{\prime} \tag{6-15}\\
& E^{\prime}=\boldsymbol{E} \cdot \boldsymbol{F}^{\prime} \tag{6-16}\\
& F^{\prime}=G^{\prime}+H^{\prime} \tag{6-17}\\
& \boldsymbol{G}^{\prime}=\boldsymbol{I} \cdot \boldsymbol{J} \cdot \boldsymbol{K}^{\prime} \cdot \boldsymbol{P}^{\prime} \tag{6.18}\\
& H^{\prime}=I \cdot L^{\prime} \cdot M^{\prime} \cdot P^{\prime} \tag{6-19}\\
& \boldsymbol{J}^{\prime}=\boldsymbol{J} \cdot \boldsymbol{N}^{\prime} \cdot \boldsymbol{P}^{\prime} \tag{6-20}\\
& K^{\prime}=K \cdot O^{\prime} \cdot P^{\prime} \tag{6-21}\\
& L^{\prime}=L \cdot T^{\prime} \cdot P^{\prime} \tag{6-22}\\
& \boldsymbol{U}^{\prime}=\boldsymbol{M} \cdot U^{\prime} \cdot P^{\prime} \tag{6-23}\\
& N^{\prime}=N \cdot Q^{\prime} \cdot P^{\prime} \tag{6-24}\\
& O^{\prime}=O \cdot R^{\prime} \cdot P^{\prime} \tag{6-25}\\
& Q^{\prime}=\boldsymbol{Q} \cdot \boldsymbol{S}^{\prime} \cdot \boldsymbol{P}^{\prime} \tag{6-26}\\
& R^{\prime}=R \cdot Y_{4}^{\prime} \cdot P^{\prime} \tag{6.27}\\
& S^{\prime}=S \cdot Y_{3}^{\prime} \cdot P^{\prime} \tag{6-28}\\
& T^{\prime}=T \cdot V^{\prime} \cdot P^{\prime} \tag{6-29}\\
& \boldsymbol{U}^{\prime}=U \cdot W^{\prime} \cdot P^{\prime} \tag{6-30}\\
& V^{\prime}=V \cdot Y_{1}^{\prime} \cdot P^{\prime} \tag{6-31}\\
& W^{\prime}=W \cdot X^{\prime} \cdot P^{\prime} \tag{6.32}\\
& X^{\prime}=X \cdot Y_{2}^{\prime} \cdot P^{\prime} \tag{6-33}\\
& Y_{1}^{\prime}=Y_{1} \cdot Y_{5}^{\prime} \tag{6-34}\\
& Y_{2}^{\prime}=Y_{2} \cdot Y_{6}^{\prime} \tag{6-35}\\
& \mathbf{Y}_{3}^{\prime}=Y_{3} \cdot Y_{7}^{\prime} \tag{6-36}\\
& Y_{4}^{\prime}=Y_{4} \cdot Y_{8}^{\prime} \tag{6-37}\\
& Y_{5}^{\prime}=Y_{5} \cdot Y_{11} \tag{6.38}\\
& Y_{6}^{\prime}=Y_{5} \cdot Y_{12} \tag{6-39}\\
& Y_{7}^{\prime}=Y_{\boldsymbol{7}} \cdot Y_{9} \tag{6.40}\\
& Y_{s}^{\prime}=Y_{7} \cdot Y_{10} \tag{6.41}\\
& P^{\prime}=Y_{13}{ }^{\prime}+Y_{14}^{\prime} \tag{6.42}\\
& Y_{s i}^{\prime}=Y_{13} \tag{6-43}\\
& Y_{14}^{\prime}=Y_{14} \tag{6-44}
\end{align*}
$$

These equations can be combined to generate a Boolean function for the system by a series of successive substitutions in the expression for Z^{\prime}. Proceed as follows:
Given:

$$
\begin{equation*}
Z^{\prime}=A^{\prime} \cdot C^{\prime \prime} \tag{6.9}
\end{equation*}
$$

Substitute Eq. 6-10:

$$
\begin{equation*}
Z^{\prime}=A \cdot B^{\prime} \cdot P^{\prime} \cdot C^{\prime \prime} \tag{6-45}
\end{equation*}
$$

Substitute Eq. 6-11:

$$
\begin{equation*}
Z^{\prime}=A \cdot B \cdot E^{\prime} \cdot P^{\prime} \cdot P^{\prime} \cdot C^{\prime \prime} \tag{6-46}
\end{equation*}
$$

Since $P^{\prime} \cdot P^{\prime}=\boldsymbol{P}^{\prime}$:

$$
\begin{equation*}
Z^{\prime}=A \cdot B \cdot E^{\prime} \cdot P^{\prime} \cdot C^{\prime \prime} \tag{6-47}
\end{equation*}
$$

Eqs. 6-12, 6-13, 6-14, and 6-15 must be analyzed as a group. They are equivalent to the following equations:

$$
\begin{align*}
C^{\prime \prime} & =\operatorname{PS}\left(C_{(j)}^{\prime}, j=1,24\right), 9(14) \tag{6-12}\\
C_{(j)}^{\prime} & =C_{(j)} \cdot D_{(j)} \cdot E^{\prime} \cdot P^{\prime} \tag{6-48}
\end{align*}
$$

These can be furcher reduced.

$$
\begin{align*}
C^{\prime \prime}= & \operatorname{PS}\left(C_{(j)} \cdot D_{(j)}, j=1,24\right), \\
& 9(14) \cdot E^{\prime} \cdot P^{\prime} \tag{6-49}\\
= & \operatorname{PS}\left(C_{(j)}, j=1,24\right), 9(14) \\
& \cdot \operatorname{PS}\left(D_{(j)}, j=1,24\right), 9(14) \\
& \cdot E^{\prime} \cdot P^{\prime} \tag{6-50}\\
= & C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot P^{\prime} \tag{6-51}
\end{align*}
$$

where

$$
\begin{align*}
& C^{\prime} \equiv \operatorname{PS}\left(C_{(j}, j=1,24\right), 9(14) \tag{6-52}\\
& D^{\prime} \equiv \operatorname{PS}\left(D_{(J)}, j=1,24\right), 9(14) \tag{6-53}
\end{align*}
$$

C^{\prime} and D^{\prime} are subsequently treated as elementary items.
Substitute Eq. 6-51:

$$
\begin{equation*}
Z^{\prime}=A \cdot B \cdot E^{\prime} \cdot P^{\prime} \cdot C^{\prime} \cdot D^{\prime} \tag{6-54}
\end{equation*}
$$

Substitute Eq. 6-16:

$$
\begin{equation*}
Z^{\prime}=A \cdot B \cdot E \cdot F^{\prime} \cdot P^{\prime} \cdot C^{\prime} \cdot D^{\prime} \tag{6-55}
\end{equation*}
$$

Substitute Eq. 6-17:

$$
\begin{equation*}
Z^{\prime}=A \cdot B \cdot E \cdot\left(G^{\prime}+H^{\prime}\right) \cdot P^{\prime} \cdot C^{\prime} \cdot D^{\prime} \tag{6-56}
\end{equation*}
$$

Substitute Eq. 6-18:

$$
\begin{align*}
Z^{\prime}= & A \cdot B \cdot E \cdot\left(I \cdot J^{\prime} \cdot K^{\prime} \cdot P^{\prime}+H^{\prime}\right) \\
& \cdot P^{\prime} \cdot C^{\prime} \cdot D^{\prime} \tag{6-57}
\end{align*}
$$

Substitute Eq. 6-19:

$$
\begin{align*}
Z^{\prime}= & A \cdot B \cdot E \cdot P^{\prime} \cdot C^{\prime} \cdot D^{\prime} \\
& \cdot\left(I \cdot J^{\prime} \quad K^{\prime} \cdot P^{\prime}+I \cdot L^{\prime} \cdot M^{\prime} \cdot P^{\prime}\right) \tag{6-58}
\end{align*}
$$

Substitute Eqs. 6-20 and 6.21:

$$
\begin{align*}
Z^{\prime}= & \lambda P^{\prime} \cdot\left(I \cdot J \cdot N^{\prime} \cdot P^{\prime} \cdot K\right. \\
& \left.\cdot O^{\prime} \cdot I \cdot L^{\prime} \cdot M^{\prime} \cdot P^{\prime}\right) \tag{6.59}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda \equiv A \cdot B \cdot E \cdot C^{\prime} \cdot D^{\prime} \tag{5-60}
\end{equation*}
$$

Substitute Eqs. 6-22 and 5-23:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(I \cdot J \cdot N^{\prime} \cdot P^{\prime} \cdot K\right. \\
& \left.\cdot O+I^{\prime} \cdot L \cdot T^{\prime} \cdot M \cdot U^{\prime} \cdot P^{\prime}\right) \tag{6-61}
\end{align*}
$$

Substitute Eqs. 6-24 and 6-25:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(I \cdot J \cdot N \cdot Q^{\prime} \cdot P^{\prime} \cdot K \cdot O\right. \\
& \left.\cdot R^{\prime}+I \cdot L \cdot T^{\prime} \cdot M \cdot U^{\prime} \cdot P^{\prime}\right) \tag{6-62}
\end{align*}
$$

Substitute Eqs. 6-26 and 6-27:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(I \cdot J \cdot N \cdot Q \cdot S^{\prime} \cdot P^{\prime} \cdot K\right. \\
& \cdot 0 \cdot R \cdot Y_{4}^{\prime}+I \cdot L \cdot T^{\prime} \cdot M \\
& \left.\cdot U^{\prime} \cdot P^{\prime}\right) \tag{6-63}
\end{align*}
$$

Substitute Eqs. 6-28 and 6-29:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(I \cdot J \cdot N \cdot Q \cdot S \cdot Y_{3}^{\prime} \cdot P^{\prime}\right. \\
& \cdot K \cdot O \cdot R \cdot Y_{4}^{\prime}+I \cdot L \cdot T \cdot V^{\prime} \\
& \left.\cdot M \cdot U^{\prime} \cdot P^{\prime}\right) \tag{6-64}
\end{align*}
$$

Substitute Eqs. 6-30 and 6-31:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(\tau \cdot Y_{3}^{\prime} \cdot P^{\prime} \cdot Y_{4}^{\prime} \cdot I\right. \\
& +I \cdot L \cdot T \cdot V \cdot Y_{1}^{\prime} \cdot M \cdot U \\
& \left.\cdot W^{\prime} \cdot P^{\prime}\right) \tag{6-65}
\end{align*}
$$

where

$$
\begin{equation*}
\tau \equiv J \cdot N \cdot Q \cdot S \cdot K \cdot O \cdot R \tag{6-66}
\end{equation*}
$$

Substitute Eqs. 6-32 and 6-33:

$$
\begin{align*}
Z= & \lambda \cdot P^{\prime} \cdot\left(\tau \cdot Y_{3}^{\prime} \cdot P^{\prime} \cdot Y_{4}^{\prime} \cdot I\right. \\
& +I \cdot L \cdot T \cdot V \cdot Y_{1}^{\prime} \cdot M \cdot U \\
& \left.\cdot W \cdot X \cdot Y_{2}^{\prime} \cdot P^{\prime}\right) \tag{6-67}
\end{align*}
$$

Substitute Eqs. 6-34 and 6-35:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(\tau \cdot Y_{3}^{\prime} \cdot P^{\prime} \cdot Y_{4}^{\prime} \cdot I+I\right. \\
& \left.\cdot \alpha \cdot Y_{1} \cdot Y_{5}^{\prime}: Y_{2} \cdot Y_{6}^{\prime} \cdot P^{\prime}\right) \tag{6-68}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha \equiv L \cdot T \cdot V \cdot M \cdot U \cdot W \cdot X \\
& Z^{\prime}= \lambda \cdot P^{\prime} \cdot\left(\tau \cdot Y_{3} \cdot Y_{7}^{\prime} \cdot P^{\prime} \cdot Y_{4} \cdot Y_{8}^{\prime}\right. \tag{6-69}\\
& \quad I+\alpha \cdot I \cdot Y_{1} \cdot Y_{5}^{\prime} \cdot Y_{2} \cdot Y_{6}^{\prime} \cdot P^{\prime} \tag{6-70}
\end{align*}
$$

Sunstitute Eqs. 6-38, 6-39, 6-40, and 6-41:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot P^{\prime} \cdot\left(\tau \cdot I \cdot Y_{3} \cdot Y_{7} \cdot Y_{9} \cdot P^{\prime}\right. \\
& \cdot Y_{4} \cdot Y_{10}+\alpha \cdot I \cdot Y_{1} \cdot Y_{5} \cdot Y_{11} \\
& \left.\cdot Y_{2} \cdot Y_{12} \cdot P^{\prime}\right) \tag{6.71}
\end{align*}
$$

Substitute Eq. 6-42:

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot\left(Y_{13}^{\prime}+Y_{14}^{\prime}\right)\left[\tau \cdot \epsilon_{1}\right. \\
& \cdot\left(Y_{13}+Y_{14}\right)+\alpha \cdot \epsilon_{2} \cdot I \\
& \left.\cdot\left(Y_{13}+Y_{14}\right)\right] \tag{6.72}
\end{align*}
$$

where

$$
\begin{align*}
& \epsilon_{1} \equiv Y_{3} \cdot Y_{4} \cdot Y_{7} \cdot Y_{9} \cdot Y_{10} \tag{6-73}\\
& \epsilon_{2} \equiv Y_{1} \cdot Y_{2} \cdot Y_{5} \cdot Y_{11} \cdot Y_{12} \tag{6.74}
\end{align*}
$$

Substitute Eqs. 6-43 and 6-44:

$$
\begin{align*}
& Z^{\prime}= \lambda \cdot\left(Y_{13}+Y_{14}\right) \cdot\left[\tau \cdot I \cdot \epsilon_{1}\right. \\
& \cdot\left(Y_{13}+Y_{14}\right)+\alpha \cdot \epsilon_{2} \cdot I \\
&\left.\cdot\left(Y_{13}+Y_{14}\right)\right] \tag{6-75}\\
&= \lambda \cdot\left(Y_{13}+Y_{14}\right) \cdot[K O N 1 \cdot I \\
& \cdot\left(Y_{13}+Y_{14}\right)+K O N 2 \cdot I \\
&\left.\cdot\left(Y_{13}+Y_{14}\right)\right] \tag{6-76}\\
& \text { where } K O N 1 \equiv \tau \cdot \epsilon_{1} \tag{6-77}\\
& K O N 2 \equiv \alpha \cdot \epsilon_{2} \tag{6.78}
\end{align*}
$$

Upon factoring out the term $\left(Y_{13}+Y_{14}\right) \cdot I$, one has

$$
\begin{align*}
Z^{\prime}= & \lambda \cdot\left(Y_{13}+Y_{14}\right) \cdot I \\
& \cdot(K O N 1+K O N 2) \tag{6.79}
\end{align*}
$$

The tree corresponding to Eq. 6-79 is shown in Fig. 6-22, where D_{1} and D_{2} are dummy variables. The Boolean symbols in Eq. 6-79 each represent an electrical function or a group of electrical functions, namely:

$$
\begin{aligned}
\lambda= & A \cdot B \cdot E \cdot C^{\prime} \cdot D^{\prime} \\
= & (\text { Orderwire }) \\
& \cdot(\text { Service Channel Line Equip) } \\
& \cdot(\text { Demodulator }) \\
& \cdot(\text { Voice Sets }) \\
& \cdot(\text { (Channel Filters }) \\
I= & (A G C) \\
& \cdot(\text { Combiner Series Circuit }) \\
Y_{13}= & (\text { Engine Gen Set } 2) \\
Y_{14}= & (\text { Engine Gen Set } 1) \\
K O N 1= & Y_{3} \cdot Y_{4} \cdot Y_{7} \cdot Y_{9} \cdot Y_{10} \cdot J \\
& \cdot N \cdot Q \cdot S \cdot K \cdot O \cdot R \\
= & (\text { Ant } 2 \text { Hor Receive })
\end{aligned}
$$

FIGURE 6-22. Boolean Tree

- (Ant 2 Vert Receive)
- (Propagation Path 2)
- (Ant 2 Hor Out)
- (Ant 2 Vert Out)
- (Combiner Gain 4)
- (Dual Rcvr 4)
- (Front End 4) • (Duplexer 2)
- (Combiner Gain 3)
- (Dual Rcvr 3)
- (Front End 3)
$K O N 2=Y_{1} \cdot Y_{2} \cdot Y_{5} \cdot Y_{11} \cdot Y_{12} \cdot L$
$\cdot T \cdot V \cdot M \cdot U \cdot W \cdot X$
$=($ Ant 1 Hor Receive $)$
- (Ant 1 Vert Receive)
- (Propagation Path 1)
- (Ant 1 Hor Out)
- (Ant 1 Vert Out)
- (Combiner Gain 2)
- (Dual Revr 2)
- (Front End 2)
- (Combiner Gain 1)
- (Dual Revr 1)
- (Front Erd 1) - (Duplexer 1)

Refer back to Fig. 6-18 for the final reliability configuration.

The relative ordering of equipment is not and need not be preserved in the reliability model.

6-3.4.3 Reliability Models for Maintained Systems

Reliability models for maintained systems require additional information above that derived from dependency diagrams and from the basic reliability block diagram. In practice (and in theoretical work) the distinction between redundancy and repair is often blurred. The names of some of the activities are sometimes different, but the activities themselves are very similar. We will use the term "replacement" to describe the activity of removing a nit that is presumed bad and inserting one that is presumed good. Whether it is the same unit after being repared, or a different one, is irrelevant. Two examples are given.

6-3.4.3.1 Example No. 1 (Fig. 6-23)

All failure and replacement rates are constant. Blocks B and C have two kinds of spares, classified according to the ease of re-

FIGURE 6.23. System For Example No. 1
placement; the kind shown separately in Fig. $6-23$ are more difficult to replace.

The system consists of three blocks:

1. Block A is a 1 -out-of- 1 : G-subsystem.
2. Block B is a 1 -out-of-3:G-subsystem.
3. Block C is a 3 out-of-7:G-subsystem.

The system is up if and only if Blocks A, B, C are Good (up).

The optimum repair st.ategy can only be determined by choosing a figure-of-merit to optimize, and then solving the problem. A reasonable set of priorities (in the absence of the complete solution) for the repairman might be the following:

1. Finish replacing the unit being worked on, if any.
2. If more than 1 unit is failed, choose, in the following order, the one to be replaced:
a. A unit from a block that is down. If more than one block is down, it makes no difference which is chosen.
b. An easily-replaceable spare. If more than one block is down, choose the one from the block that has the fewest spares that are good.
3. If a rule is not given completely encigh, choose one from the allowable failed units at random.

The rules can become quite complicated in a theoretical analysis. In practice, the repairman should not be required to make complicated calculations merely to find out which unit to work on. The rules also can be so complicated as to make theoretical analysis virtually impossible. If the replacement rate is much higher than the failure rate, the standard matrix techniques can be used.

BLOCK B
BLOCK A

5－out－of 7：C

2 repairmen for pach Block．

Svstem is Gosd lup；if and onlv if A and B are Good（up）

FIGUPE 6－24．System For Example No． 2

6－3．4．3．2 Example No． 2 （Fig，6－24）

All failure and replacement rates are con－ stant．Block A is a 4－out of－5：C－subsy：tem． Block B is a 5－out－of－7：G－subsystem．I here is only 1 kind of spare in each hlork．

64 OTHEA MDDELS

The reliahility block diagram has been usad thrcughout this chapter to illustrate logic aiagrams for a system．Other kinds of diagrams，e．g．，fault tree，might be more appropriate in some cases．See Part Two，De－ sign for Relinbility，for a disclission of these other kinds of logic diagrams．

REFERENCES

1．S．Orbach，The Generalized Effectiveness Methodology（GEM）Program，Lab Proj－ ect 920－72－1，Progress Report 1，U S Naval Applied Science Laboratory， 8 May 1968.

2．The Development of a Generalized Effec－ tiveness Methodnlogy，Interim Report， U S Naval Applied Science Laboratory， 30 September 1966.
3．P．Giordano，S．Seltzer，and C．Sontz， ＂General Effectiveness Methodology＂， Operations Research Society of America Meeting，Durham，North Carolina， 18 October 1966.
4. MIL-HDBK-226(NAVY), Design Disclosure for Systems and Equipment, 17 June 1968.
5. S. Seeley, Radio Electronics, McGrawHill Book Company, Inc., New York, 1956.
6. Basic and Advanced Infrared Technology, (AD-634 535), U S Army Missile Command, Redstone Arsenal, Alabama, 15 April 1965.
7. Main Battle Tank-70, Reliability and Performance Status Report, Main Battle Tank Engineering Agency, Detroit, Michigan, June 1970.
8. Universal Combined Radio Relay and

Troposcatter Equipment, Vol. 1, RADC-TR-60-246, ITT Communications Systems, Inc., Prepared for Rome Air Development Center, Air Force Systems Command, U S Air Force, 15 July 1961.
9. G. Chernowitz, et al., Electromechanical Component Reliability, RADC-TDR-63-295, American Power Jet Company, May 1963.
10. N. P. Chironis, Machine Devices and Instrumentation, McGraw-Hill Book Company, Inc., New York, 1966.
11. I. M. Copi, Introduction to Logic, The Macmillan Company, New York, 1961.

CHAPTER 7 KINDS OF REDUNDANCY AND REPAIR

7.1 INTRODUCTION

Redundancy and repair are very similar concepts. In the general case where switching is not instantaneous it is easy to visualize two similar operations, one called redundancy and one called repair. In redundancy, the time used to replace a faulty unit is usually shorter than the time a repair is considered to take.

There are many important considerations in a redundancy/repair situation, i.e.,

1. In what staive are all the units at $t=0$? How does one know? Is checkout perfect?
2. In what state is a repaired unit? Is it good-as-new? How does one know? Is checkout perfect?
3. In what state is a repaired system? How does one know? Is checkout performed? Is it perfect?
4. What kinds of failures are being alleviated? If failures are due to the rare, random occurrence of severe conditions, redundancy might not be of much help.
5. How difficult is it to know that a unit has failed? How difficult is it to remove the faulty unit and replace it?
6. How much of an improvement in reliability is needed or expected? What reliability neasure is important in your case? For example, mean time to failure is not a good reliability measure for short times.
7. How much does redundancy/repair cost in weight, dollars, volume, design effort, checkout, schedule time, heat dissipation, system complexity, extra conneztors, etc.?
8. What about switching? Is information lost during switching?
9. What about the failure behavior of standby equipment?
10. Under what conditions are failures s-independent? When the correct calculations have been made, how much improvement in reliability will there be?

7-2 KNOWLEDGE OF SYSTEM STATE

In order to analyze a system, one needs to know the state (condition) of the system at several time instants. The two most important instants are "time = zero" and "just after repar".

If a system contains any redundancy, the question arises, "How does one know that each unit is good?" Just knowing that the system is up is not enough, since some units could be bad and the system would still be up. Therefore, there must be checkout of each unit in the system. This involves hardware, software, time, and money. Checkcut is rarely perfect. Will the analysis take that into account? The knowledge of system state at "time $=$ zero" is also importanc because in many analyses, a system or unit is presumed t, be good-as-nev: viz., "time = zero" again ifter repair.

There are only two tractable choices in deciding the condition of a unit after repair: good-as-new and bad-as-old. Good-as-new often is taken to mean "perfect", but if checkout is involved all it means is that time reverts to zero for the unit that is good-as-new. The phrase bad-as-old was coined to contrast with good-as-new and to illustrate the condition where the failure rate of the system "immediately after a repair" is the same as it was "just before repair". An internal combustion engine after a mincr tune-up is a good illustration of bad-as-old. The major components of the engine dirn't change; perhaps all that was done was to clean and regap the spark plugs, and adjust the distributor gap and the timing. The engine certainly is not good-as-new. A Poisson process with nonconstant rate is an example of the bad-as-old behavior.

When the falure rate of each unit is constant, there is no difference between bad-asold and goc d -as-new.

In theoretical analyses with complicated system-states a common assumption is that the repaired unit is good-as-new, but the other units are bad-as-old. Of course, because of tractability considerations, failure rates of units are assumed most commonly to be constant so that any time the system is known to be working, it is good-as-new. Many papers require that the assumptions be inferred from the mathematics; the authors have been remiss in stating assumptions.

Many systems use periodic checkout to ascertain the state of the system. Preventive maintenance is performed as required. But
any time maintenance of any kind is performed, there is the real possibility and danger that some part of the system has been dumaged unknowingly. There is a short period of: "infant mortality" immediately after anyone fusses with any complicated system. One illustration of this fact is that, at least during World War II, the repair crew chief for aircraft was supposed to go along on the checkout flight after a repair.

The state of a complicated real system is not an easy thing to determine. Many analyses make the blithe assumption of perfection after repair, replacement, or checkout. Real equipment is rarely like that.

7.3 SYSTEM LEVEL FOR REDUNDANCY APPLICATION

In a system, at what level ought redundancy to be applied? In principle (in the mathematics anyway), one could make every piecepart redundant, or one could just have several systems. All of the factors listed in par. 7-1 apply to this decision. The question of switching is especially important, simply because so often it is assumed (in the mathematics) to be perfect: zero cost, instantaneous, no information lost, no size or weight, no design time, etc.

The lower the level at which redundancy is applied, the more likely are common-mode failures to be important. The question of conditional s-independence needs to be investigated very carefully. This question is allied closely with the level at which repair parts ought to be stocked. What about throw-away maintenance? At what level ought it be performed?

In practice, an analysis barely can hope to scratch the surface. Some rough guidelines can be developed, but pilot projects are the places where knowledge is really gained. It is easy for the proposed system to be intractable for anything but a Monte Carlo simulation. Therefore, the design engineer and his staff analysts need to know what simulation ia:guages are available on their computer.

Many analyses are scattered in the literature. Rarely will the one be there that you want. They can, however, give an idea about what to analyze and what direction the results
might take. See the chapters that follow and the Bibliography at the end of this chapter for some sources.

Roughly speaking, the lower the level at which redundancy is applied, the more effective it is (if switching is perfect and failures are s-independent) and the more it costs (in everything).

7.4 METHOD OF SWITCHING

In virtually all systems, some kinci of "switching" is necessary for redundancy to be effective. A fluid flow system might require a check-valve on each redundant pump; an electronic system might have to be disconnected. The three main categories discussed here are automatic, manual, and repair.
I. automatic switching, the operator need not do anything in case of a unit failure. He may not even be aware that anything has gone wrong. This is the easiest kind of redundancy to analyze, although it is difficult to implement in hardware. If periodic checkout is not performed, the failed unit might not be discovered until system failure.

Manual switching and repair/replacement are different degrees of the same thing. An operator might have only to turn a switch or valve handle; or he may merely release some catches or quick disconnects, pull out the faulty unit, and shove in a good one. The time it takes for removal/installation and the time for acquiring the spare are usually matters of degree, rather than of kind, in the analysis. In a fixed ground installation, the whole thing might be accomplished in a few minutes for a radio-receiver. The transmission in a tank might take hours to remove/install and days to fix or acquire another.

The methed that the designer finally chooses depends on the system specifications and constraints, on what he is familiar with, and on what he thinks will really happon in the field. A lot depends on the kind of logistic system in use for that equipment.

Often, a Monte Carlo simulation of the system is the only practical way to analyze what will happen. In such an analysis it often pays to be aware of some of the "paths" a system takes during the failure/repair se-
quences. In complicated systems, the designer might be quite surprised at what happens; situations easily cars arise that the designer never dreamed - ${ }^{-1}$.

Reconfiguration of the system to operate in a degraded mode after a failure and before a repair is effected is often a desirable situation. A computer for example might continue to operate but at a lower speed during the 5 min it takes to remove and replace a unit. A communication system might slow its message rate during switchover. The slew rate of a hydraulically powered system might drop to one-third its usual value while a redundant part of the pumping system is being replaced.

As a matter of practical fact, a designer will make many decisions without using much more than the engineering judgment of himself and his associates (staff or line). There is not enough time, money, or people to analyze everything.

7-5 FAILURE BEHAVIOR OF SPARES AND OTHER PARTS

The terminology in this field is very confusing because it has grown like Topsy. The best terminology seems to be cold-warm-hot spares; it is flexible and is not confused with other aspects of system design. The crux of the matter is the failure behavior of the units; but some of the terminology refers to the use of the unit and only indirectly implies the failure behavior. The remainder of this paragraph presumes constant failure rates. Morecomplicated failure distributions can be discussed, but the origin of time must always then be kept track-of for every unit-a difficult task indeed.

A cold unit has zero failure rate. This is not a likely situation because spares in storage, etc., do deteriorate. But it is very tractable in an analysis. This is the same as pas-sive-redundancy. In manty cases it is what an author means by standby-redundancy (unless he has otherwise specified the failure behavior).

A hot unit has the same failure rate as an operating unit, regardless of whether it is actually in operation or not. This is the same as active redundancy. It is sometimes implied
(by some authors) just by the word redundancy.

A warm unit has a failure rate somewhere between a hot unit and a cold unit. Often it is taken to be the general case and includes hot and cold as limiting situations.

In some analyses where the units always are working, the individual failure rates depend on the number that are working. A conceptually simple example is several induction motors (tied firmly together so that their shafts are effectively in line). Suppose the failure mode is insulation failure due to temperature rise and there are six high-slip 5 hp motors driving a $20-\mathrm{hp}$ load. The temperature rise of the operating motors will depend on the number of operating motors. Allow 10 percent for nonuniform distribution of load. Then the maximum load on each motor when six motors are operating is $(20-\mathrm{hp} / 6) \times 1.1=$ 3.7 hp ; for five motors it is 4.4 hp ; for four motors, it is $5.5-\mathrm{hp}$; and for three motors, it is 7.3 hp . Obviously, the insulation will degrade nuch faster as the number of motors is reduced. At nominal 7.3 hp load, the current would probably be high enough to kick out the ovurloads. Another example is a communication system. If radio receivers are handling traffic in parallel, the failure rate of each receiver is probably independent of the number of units which are operating, unless heat dissipation is a critical factor.

It is best to use a term to describe redundancy which indicates the failure rate behavior, not the operating condition of a redundant/spare unit.

7-6 STYLES OF REDUNDANCY

There are at least three styles of creating redundancy:
(l) k-out-of-n systems
(2) Voting techniques
(3) Other.

The "Other" category includes combinations of the first two, and multiple units which do not easily reduce to k-out-of-n. Hammock (bridge) networks are in the latter category. It is most important to distinguish between the physical system and the logic chart used to describe the physical system. The description
difficulty typically arises when there are two "opposite" failure modes: open - short, dud premature, too soon - too late, high - low, etc.; then at least two logic charts are necessary for the one physical system. Very often a redundant feature for one mode tums out to be a series feature for the other mode. For example, features which decrease the probability of prematures, will usually increase the probability of duds. The Bibliography at the end of this chapter shows sources of further information.

76.1 k-OUT-OF-n SYSTEMS

A k-out-of- n :G-system has n units and is Good (up) if and only if at least k units are Good (up).

A k-out-of- $n: F$-system has n units and is Failed (down) if and only if at least k units are Failed (down).

A series system is a 1 -out-of-n:F (n-out-of-n:G)-system-i.e., if 1 unit fails, the system fails-all units must be good for the system to be good.

A parallel system is usually taken to be a 1-out-of-n:G (n-out-of- $n: F$)-system-i.e., if 1 unit is good, the system is good-all units must be failed for the system to fail.

A k-out-of- $n:$ F system is an $(n-k+1)$. out-of-n:G-system; and a k-out-of-n:G-system is an ($n-k+1$)-out-of-n:F-system. Sometimes the name parallel-system is used synonymously with a k-out-of-n system. Since the term parallel is ambiguous, it is best avoided when accurate description is needed. The k-out-of-n:G or k-out-of $n: F$ notations are much to be preferred.

A k-out-of $-n$ system is also an ambiguous phrase and is used both ways in the literature. It is best to use the : G or : F notation when accurate description is needed, and to define it.

The k-out-of-n system is usually easy to analyze if the redundancy is either hot or cold and the switching is perfect. The general case for warm redundancy and imperfect switching has not been solved in general. Some results are available for small n and constant failure rates for each unit. Ref. 3 provides an extend-
ed summary and analyxis of many k-out-of-n systems.

7-6.2 VOTING TECHNIQUES

Voting ordinarily is associated with digital electronic circuits, although some circuits for analog electronic systems have appeared in the literature. It does not appcar to be applicable at all to mechanical systems.

A voter has n active inputs, the output corresponds to the inputs which are the same for more than $n / 2$ of the inputs. In most hardware implementations, $n=3$, and two inputs determine the output. If a unit fails (and the failure is somehow sensed), the failed unit can be removed and the voter can be restructured. If $\boldsymbol{n}=\mathbf{3}$ and one unit fails without being removed, then $n=2$ and all must agree, in order for a signal to be passed on. If those two disagree, then the designer has to decide what to do. Refs. 1, 2, and 4 discuss this situation and give some other references.

It is possible to have some spares for some voters, e.g., each element could be a k-out-ofn subsystem. The voters themselves can be arranged in a voting fashion. Refs. 1 and 4 describe many of the possibilities for redundancy in computers. Refs. 2 and 3 give many of the formulas that are useful in analyzing these redundancies.

7.6.3 OTHER SYSTEMS

Voting techniques can be combined with k-out-of- n systems to enhance hardware reliability along with masking of faults which need not be permanent. Very elaborate redundancy techniques are best avoided unless an extremely thorough investigation, both theoretical and practical, has been made of the proposed system. Coverage is a term used to describe the detection-switching-retention process in redundancy. In order for automatic redundancy to be effective, failed units must be detected accurately and without false alarms, then the spare unit (sumehow known to be good) must be switched in, and the information that the system was processing cannot be mangled during the operation.

There are redundant (nonvoting) systems
that cannot be reduced to the k-out-of $-n$ type. The logic diagrams for the irreducible networks often are called bridge or hammock networks (bridge because of the similarity to a Wheatstone bridge; hammock because the appearance can be like a rope hammock). The success or fallure events for these networks usually are more complicated than simple series-parallel networks. Some analytic methods of reliability calculation do not handle bridge networks very well.

There are, of course, many kinds of redundancy which are not easily classified. For example, some auxiliary systems to be used only in emergencies are not equivalent to the systems they "replace". Another example is the restructuring kind of redundancy where, if a unit fails, other units are restructured to keep the system going, albeit at a reduced level.

REFERENCES

1. J. L. Bricker, "A Unified Method for Analyzing Mission Reliability for Fault Tolerant Computer Systems", IEEE Transactions on Reliability, R-22, pp. 72-77, June 1973.
2. N. G. Dennis, "Reliability Analyses of Combined Voting and Standby Redundancies", IEEE Transactions on Reliability, R-23, April 1974.
3. N. G. Dennis, "Insight Into Standby Redundancy via Unreliability", IEEE Transactions on Reliability, R-23, Dec. 1974. (The Dennis papers contain many further references.)
4. Mathur and deSousa, "Reliability Models of NMR Systems," IEEE Transactions on Reliability, R-24, June 1975.

BIBLIOGRAPHY

Gnedenko, Belyayev, and Solovyev, Mathematical Methods of Reliability Theory, Academic Press, N. Y., 1969.
IEEE Transactions on Reliability.
Proceedings of the Annual Symposia on Reliability.
Proceedings of the Annual Reliability and Maintainability Symposia.
M. L. Shooman, Probabilistic Reliability, McGraw-Hill Book Company, Inc., N. Y., 1968.

CHAPTER 8 RELIABILITY PREDICTION (PASSIVE REDUNDANCY, PERFECT SWITCHING)

80 LIST OF SYMBOLS

$$
\begin{aligned}
& i_{s}, i_{0}, i_{z}=\text { event of short, open, or good } \\
& \text { for capacitor } i \\
& F=\text { event of failure }
\end{aligned}
$$

k-out-of- $n: F=$ special kind of system
k-out-of-n:G = special kind of system
$M T F_{i}=$ Mean Time to Failure for case
$n=$ number of logic elements
$n_{1}=$ greatest "integer $\leqslant n / 2$ "
$R_{1}=8$-reliability for case i
$R_{i}, R=$ element s-reliabilities
$\boldsymbol{R}_{v}=s$-reliability of the voter
$\bar{Q}_{i}^{v}=1-R_{i}$
$\bar{R}_{i}=1 \cdot R_{i}$
$\boldsymbol{s}_{-}=$denotes statistical definitions

8-1 INTRODUCTION

This chapter deals with the simplest of formulas. The probability of failure of each element is not affected by its active/standby status nor by the condition of other elements. Switching is either (a) perfect, i.e., switching and all of its ramifications are not considered at all; or (b) can be represented adequately by a block in the logic diagram.

In analyzing a system by this method, the disiinction between the physical situation and the logic chart always must be kept in mind. Elements that are physically in series can be logically in parallel (it depends on failure modes). If two centrifugal pumps are physically in tandem and one stops running, the other could possibly carry the load; they would be logically in parallel. Refs. $3-8$ give many formulas for system reliability. Series and parallel are terms which are best avoided when precision is necessary.

All element behaviors are conditionally s-independent (the "conditional" is to emphasize that unconditional s-independence is rarely obtained).

8.2 k.OUT.OFn SYSTEMS

A k-out-of- n :F-system has n elements and Fails if and only if at least k elements Fail.

A k-out-of- n :G-system has n elements and is Good if and only if at least k elements are Good.

Case 1. k-out-of-n:G, all $R_{i}=R$
$Q_{1}=\sum_{k}^{n}\binom{n}{i} R^{i} \hbar^{n-i}$

$$
=\sum_{0}^{n \cdot k}\binom{n}{i} R^{n-i} \bar{P}^{1}
$$

$\bar{R}_{1}=\sum_{0}^{k-1}\binom{n}{i} R^{i} \bar{R}^{n \cdot 1}$

$$
\begin{equation*}
=\sum_{n-k+1}^{n} R^{n-i} \bar{R}^{i} \tag{8-1b}
\end{equation*}
$$

Case 2. k-out-of-n: F , all $R_{i}=R$
$\overline{\mathbb{R}}_{2}=\sum_{k}^{n}\binom{n}{i} \bar{R}^{i} R^{n \cdot i}$

$$
\begin{equation*}
=\sum_{0}^{n-k}\binom{n}{i} \bar{R}^{n-i} R^{i} \tag{8-2a}
\end{equation*}
$$

$R_{2}=\sum_{0}^{k-1}\binom{n}{i} \bar{R}^{i} R^{n-i}$

$$
\begin{equation*}
=\sum_{n-k+1}^{n} \bar{R}^{n \cdot 1} R^{1} \tag{8-2b}
\end{equation*}
$$

Case 3. 1-out-of-n:G (parallel)

$$
\begin{equation*}
\bar{R}_{3}=\bar{R}_{1} \bar{R}_{2} \cdots \bar{R}_{n} \tag{8-3}
\end{equation*}
$$

Case 4. 1-out-of-n:G (parallel), all $R_{i}=R$

$$
\begin{equation*}
\overline{\operatorname{R}}_{4}=\bar{R}^{n} \tag{8.4}
\end{equation*}
$$

Case 5. 1-out-of-n:F (series)
$R_{5}=R_{1} R_{2} \cdots R_{n}$
Case 6. 1-out-of-n:F (series), all $R_{i}=R$
$R_{6}=R^{n}$
The formulas for k-out-of-n systems when all $\boldsymbol{K}_{i} \neq R$ are not tractable. They are derived generally as shown in par. 8-4.

8-3 COMBINATIONS OF SERIES-PARAL. LEL ELEMENTS

Many systems can be considered as made up of series-parallel combinations of elements. A convenient technique for reliability calculations is to reduce each simple combination of series or parallel elements to a single element with the reliability of the combination. Example No. 1 (Fig. 8-1) shows how the reduction is performed. Fig. 8-1(A) shows the original logic chart. Each block is an element and is numbered. Equivalent blocks are numbered further.

The first reduction takes place as follows (Fig. 8-1(A) to Fig. 8-1(B)):
$\bar{R}_{14}=\bar{R}_{7} \bar{R}_{8} \bar{R}_{9}$
$R_{14}=1-\bar{R}_{14}$

The second reduction is as follows (Fig. 8-1(B) to Fig. 8-1(C)):
$R_{16}=R_{6} R_{14}$
$\bar{R}_{16}=1-R_{16}$
The third reduction is as follows (Fig. $8.1(\mathrm{C})$ to Fig. $8-1(\mathrm{D})$):

$$
\begin{align*}
& \bar{R}_{17}=\bar{R}_{15} \bar{R}_{16} \tag{8-12a}\\
& R_{17}=1-\bar{R}_{17} \tag{8-12b}
\end{align*}
$$

The fourth reduction is as follows (Fig. 8-1(D) to Fig. 8-1(E)):

$$
\begin{align*}
& R_{18}=R_{13} R_{17} \tag{8-13a}\\
& \tilde{R}_{18}=1-R_{18} \tag{8-13b}
\end{align*}
$$

The fifth reduction is as follows (Fig. 8-1(E) to Fig. 8-1(F)):

$$
\begin{align*}
& \bar{R}_{19}=\bar{R}_{12} \bar{R}_{18} \tag{8-14a}\\
& R_{19}=1-\bar{R}_{19} \tag{8-14b}
\end{align*}
$$

The final reduction is as follows (Fig. 8-1(F) to Fig. 8-1(G)):

$$
\begin{align*}
& R_{20}=R_{1} R_{19} \tag{8-15a}\\
& \bar{R}_{20}=1-R_{20} \tag{8-15b}
\end{align*}
$$

Thus a series of series-parallei reductions has solved the example problem in Fig. 8-1. There is no good reason to combine all the formulas into one expression; it would be tedious, long, and cumbersome.

Not all systems can be reduced by this technique, but a great many cas. If the switching is not perfect, one of the other techniques is better-if for no other reason that not all failure events are likely to be s-independent.

8.4 EVENT ANALYSIS

When logic charts are not series-parallel arrangements, the analysis can proceed by looking at all possible events, classifying them into appropriate subsets (e.g., system-good, system-degraded, system-failure-type-1, sys-tem-failure-type-2). Then the probability of each subset is calculated by the rules for evaluating probabilities of combinations of events (Chapter 3).

Logic charts generally are drawn from a physical diagram and a knowledge of the requirements for success. In some cases, as in Example No. 2 (Fig. 8-2), it is too complcated to draw logic dagrams; instead the events are histed. There are three possible states of each capacitor and four capacitors:

(A) Initial Logic Chart

(B) First Reduction of Loyic Chart

(C) Second Reduction of Logic Chart

IN

(D) Third Reduction of Logic Chart

Series combinations are 1 -out-ofon F, use Eq. 8.5.
Perallel combinations are 1 -out-of-n G. use Eq. 8-3.
Find the system reliability and unreliability.
In this kind of diagram, success is a continuous path from input to ourput.

FIGURE 8.1. Logic Diagrams for Example No. 1.

(E; Fourth Reduction of Logic Chart

(F) Fifth Reduction of Logic Chart

(G) Final Reduction of Logic Chart

Series combinations are 1-out-of-n•F; use Eq. 8.5
Parallef combinatıons are 1 -out-of-n:G, use Eq. 8-3.
Find the system reliability and unreliability.
In this kind of diagram, success is a contınuous path from input to output.

FIGURE 8-1. Logic Diagrams for Example No. 1/cont'd)
there are $3^{4}=81$ possible combinations. In order to simplify Table 8-1, the capacitor numbers are listed at the top of each column, and an " o ", " s ", or " g " put in the column for each event. An " f " indicates Failed for the network; a blank indicates Good. It is failed if (1 and 2 are short) $\cup(3$ and 4 are short) $\cup(1$ and 4 are short) $\cup(3$ and 2 are short) $\cup(1$ and 3 are open) $\cup(2$ and 4 are open). Table $8-1$ is long and tedious. The events can be put in more symbol notation and give the same results, i.e..

$$
\begin{gather*}
F=\left(1_{s} \cap 2_{s}\right) \cup\left(3_{s} \cap 4_{s}\right) \cup\left(1_{s} \cap 4_{s}\right) \cup\left(2_{s} \cap 3_{s}\right) \\
\cup\left(1_{0} \cap 3_{0}\right) \cup\left(2_{0} \cap 4_{0}\right) . \tag{8.16}
\end{gather*}
$$

However, the events in the Table are all mutually exclusive whereas the events in parentheses in Eq. 8-16 are nol.

It takes but little imagination to realize that this approach can get out of hand with very little complication of the network or system.

8.5 CUT SETS

A cut set is an event (subset of the sample space) such that when it occurs, the system fails in the indicated failure mode. A minimal cut set is a cut set such that the elimination of any element renders it no longer a cut set.

Capacitors can fail open or short. The network is good as long as it is neither man nor short.
i_{o} implies "open circuit of capacitor $i^{\prime \prime}$
i_{s} implies "short circuit of capacitor i "
i_{g} implies "good cepacitor i "
FIGURE 8-2. Physical Diagram for Example No. 2

In the example from par. 8-4, ir ri:. 8-2 and Eq. 8-16, each of the six eventi in pare. 1 theses in Eq. 8-16 is a minimal cut set. The $\operatorname{Pr}\{F\}$ in Eq. $8-16$ can be calculated by an iterative procedure using Eq. 2-20 which provides a series of upper and lower bounds on the $\operatorname{Pr}\{F\}$.

The first upper bound is the sum of the probabilities of each of the six events in parentheses in Eq. 8-16. The first lower bound is found by subtracting (from the first upper bound) the sum of the probabilities of the 15 unions of each pair of the six events. The second upper bound is found by adding (to the first lower bound) the sum of the probabilities of the 20 unions of each triplet of the six events. As shown in Eq. 2-20, the unions are taken two, then three, then four, then five, and finally six at a time. The odd ones (one, three, five) are added, the even ones (two, iour, six) are subtracted. An example of the procedure is shown in Ref. 1; a FORTRAN progrem for performing this calculation is shown in Ref. 2.

Even though the principles involved are straightforward, inplementing them on any reasorably sized system can be very tedious and complicated.

Chanter 7 "Cause-Consequence Charts (and Fault Trees)" of Part 'Two, Lesign for

Relialiiity, contains further information and references on finding minimal cut sets for systems; references are also made there to automated methods of finding all minimal cut sets for a fault tree.

8.6 MAJORITY VOTING

In majority-voting redundancy the proper output of the system is presumed to be the output of the majority of the individual logic elements which feed the voter (Ref. 3). The output is determined by the voter, which decides what the majority of the elements indicates. The system gives the correct output when less than half of the elements have failed and when the voter is good.

Case 7. Simple majority voting

$$
\begin{equation*}
Q_{7}=R_{v} \sum_{n_{1}}^{n}\binom{n}{i} R_{1}^{\prime} \bar{R}_{1}^{n \cdot i} \tag{8.17}
\end{equation*}
$$

where
$n=$ number of logic elements
$n_{1}=$ greatest "integer $\leqslant n / 2$ "
$R_{v}=s$-reliability of the voter
$R_{1}=s$-reiability of a logic element
$\bar{R}_{1}=1-R_{1}$

TABLE $8-1$

STATES OF CAPACITOR NETWORK IN FIG. 8-2

1234

1234
1234

$\mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g}$	8ggg	Oggg
g g g ${ }^{\text {g }}$	sggsf	Ogg
g g g 0	8ggo	Oggo
g gsg	8g8g	Og8g
ggssf	8 gssf	Ogsef
ggso	sgso	0 gs 0

ggog	8 gog	3 gogf
ggos	sgosf	Jgosf
ggoo	sgoo	Ogoof
gsgg	ssggf	Osgg
gsgs	ssgsf	Osgs
ysgo	ssgof	Osgo
gssgf	ssigif	ossigf
gsssf	ssisf	osssf
gs of	sssof	Os sof
gsog	Ssogf	osog f
gsos	Ssosf	ososf
gSoo	ssoof	osoof

gogg	sogg	OOg g
gogs	sogsf	00 gs
gogof	sogof	Oogof
gosg	sosg	00 sg
goss f	sossf	00ssf
gosof	sosof	Oos of
goog	soog	000 gf
goos	soosf	000 sf
gooof	sooof	0000 f

Eq. 8-17 asumes that failure of any element is absolute (i.e., it cannot assist in giving the correct answer) and is s-independent. Other analyses are possible which make other more realistic assumptions about the failures.

The voter itself can be made into a majority element; the analysis of such a system becomes quite complicated.

REFERENCES

1. A. C. Nelson, J. R. Batts, R. L. Beadles, "A Computer Program for Approximating System Reliability", IEEE Transactions on Reliability, R-19, 61-65, May 1970.
2. J. R. Batts, "Computer Program for Approximating System Reliability-Part II", IEEE Transactions on Reliability, R-20, 88-90, May 1971.
3. Handbook for Systems Application of Redundancy, US Naval Applied Science Laboratory, 30 August 1966.
4. N. G. Dennis, "Reliability Analyses of Combined Voting and Standby Redundancies", IEEE Transactions on Reliabilitv, R-23, April 1974.
5. N. G. Dennis, "Insight Into Standby Redunaancy via Unreliability", IEEE Transactions on Reliability, R-23, December 1974.
6. M. L. Shooman, Probabilistic Reliability, McGraw-Hill, N.Y., 1968.
7. Gnedenko, Belyayev, and Soloveyv, Mathematical Methods of sleliability Theory, Academic Press, N.Y., 1969.
8. Mathur and deSousa, "Reliability Models of NMR Systems", IEEE Transactions on Reliability, R-24, June 1975.

CHAPTER 9 RELIABILITY PREDICTION (TIME DEPENDENT)

9.0 LIST OF SYMBOLS

$$
\begin{aligned}
& \operatorname{csqf}\left(x^{2}, \nu\right)=\text { chi square Cdf with } \nu \text { degrees } \\
& \text { of freedom } \\
& \operatorname{crqfc}\left(x^{2}, \nu\right)=1-\operatorname{csqf}\left(x^{2}, \nu\right) \\
& f(t)=p d f \text { of } t \\
& f(t), g(t)=p d f ' s \text { for elements in par. 9-6 } \\
& f_{\alpha}=p d f \text { for element } \alpha \text { in par. 9.7 } \\
& F_{\alpha}=C d f \text { for element } \alpha \text { in par. 9-7 } \\
& F(t), \boldsymbol{G}\left(t^{\alpha}\right)=S f^{\prime} \mathrm{s} \text { for elements in par. 9-6 } \\
& F_{\alpha}=S f \text { for element } \alpha \text { in par. 9-7 } \\
& \text { gauf(} \cdot \text {) }=\text { Cdf for } \text { s-normal (Gaussian) } \\
& \text { distribution } \\
& \operatorname{gaufc}(\cdot)=1-\operatorname{gaff}(\cdot) \\
& k=\lambda / \lambda^{\prime} \\
& M T F_{i}=\frac{\text { Mean Time to Eailure for case }}{i} \\
& p_{i}, q_{i}=\text { element } s \text {-reliability and } \\
& s \text {-unreliability, respectively, } \\
& \text { (Table 9-2) } \\
& \text { pdf }=\text { probability density function } \\
& R(t), R_{i}(t)=8 \text {-reliability dering interval } 0 \\
& \text { to } t \\
& R_{i}=s \text {-reliability for case } i \\
& \bar{R}_{i}=1 \cdot R_{i} \\
& \boldsymbol{s}=\text { = denotes statistical definition } \\
& S f=\text { Survivor function } \\
& t=\text { time, time to-failurp } \\
& t_{1}=a \operatorname{time} 0 \leqslant t_{1} \leqslant t \\
& z_{\alpha}=\text { standard } \delta \text {-normal variate } \\
& \theta_{i}=\text { an } M T F \text { for situation } i \\
& \lambda, \lambda_{i}=\text { failure rates } \\
& \lambda^{\prime}, \lambda_{n}=\text { failure rates } \\
& \lambda \hat{t}=\text { dimensionless "parameter" } \\
& \mu, \sigma=\text { mean and standard deviation, } \\
& \text { respectively, for an } s \text {-normal } \\
& \text { distribution } \\
& \tau=\lambda t \text {; time interval for par. 9-9 }
\end{aligned}
$$

9-1 INTRODUCTION

There is a multitude of formulas for calculating reliability of redundant systems. Virtually all of them presume conditional s-independence of the elements. It is important in : practical analysis to list each set of conditions under which s-independence will hold.

In the vasi majority of cases in analyses for redundancy, transition rates (e.g., failure
and repair rates) are assumed to be constant. Any other assumption causes many complications in the analysis.

9-2 MEASURES OF RELIABILITY

The two measures most frequently used to compare the effectiveness of redundancy are:

1. Mean time to failure (MTF) of the system-useful when miseion times are long compared to the lives of elements.
2. Probability of failure of the syctemuseful when mission times are short compared to the lives of elements.
In all cases in this volume, the proviso exists on all formulas that the indicated operation is "legal" and the result exists. The proviso is satisfied for practical reliability problems.

The MTF is defined as

$$
\begin{equation*}
M T F \equiv \int_{0}^{\infty} t f(t) d t=\int_{0}^{\infty} R(t) d t \tag{9-1}
\end{equation*}
$$

where
$f(t)=p d f$ of time to failure
$R(t)=S f$ of time to failure

9.3 THE EXPONENTIAL DISTRIBUTION

The time-to-failure pdf and the reliability function (survivor function $S f$) of the exponential distribution are, respectively,

$$
\begin{align*}
& f(t)=\lambda e^{-\lambda t} \tag{9-2}\\
& R(t)=e^{-\lambda t}
\end{align*}
$$

where λ is the constart failur. (hazard) rate. All failures are s-independent and all standibys are hot (active).

Case 1. Two elements in parallel, 1 -out of $2: G$) have feilure rates, λ_{c} and λ_{b}. The s-reliability $\mathfrak{R}_{1}(t)$ is

$$
\begin{align*}
R_{1}(t) & =1-\left(1-e^{-\lambda_{a} t}\right)\left(1-e^{-\lambda_{b} t}\right) \\
& =e^{-\lambda_{a} t}+e^{-\lambda_{b} t}-e^{-\left(\lambda_{a}+\lambda_{b}\right) t} \tag{9-3b}\\
M T F_{1} & =\frac{1}{\lambda_{a}}+\frac{1}{\lambda_{b}}-\frac{1}{\lambda_{a}+\lambda_{b}} \tag{9-3a}
\end{align*}
$$

Case 2. Same as Case 1, except $\lambda_{a}=\lambda_{b}=$ λ (identical elements), then

$$
\begin{align*}
& a_{2}(t)=e^{-\lambda t}\left(2-e^{-\lambda t}\right) \tag{9-1}\\
& M T F_{2}=\frac{8}{2 \lambda} \tag{9-4b}
\end{align*}
$$

Core 3. m active-parallel elements (1-out-of-m:G, hot standby).

$$
\begin{align*}
& X_{3}(t)=\prod_{i=1}^{n}\left(1-e^{-\lambda_{k}}\right) \tag{9-5a}\\
& M T F_{3}=\sum_{i=1}^{m} \frac{1}{\lambda_{i}}-\sum_{\substack{i, j=1 \\
i<j}}^{m} \frac{1}{\lambda_{i}+\lambda_{j}}+ \\
& \sum_{\substack{i, j, k=1 \\
i<j<k}}^{m} \frac{1}{\lambda_{i}+\lambda_{j}+\lambda_{k}}-\cdots \tag{9-5b}
\end{align*}
$$

Case 4. Same as Case 3, except ail elements are identical, $\lambda_{i}=\lambda$ for all i.

$$
\begin{align*}
& {\overline{Q_{4}(t)}}=\left(1-e^{-\lambda t}\right)^{m} \tag{9-6a}\\
& M T F_{4}=\frac{1}{\lambda} \sum_{i=1}^{m} \frac{1}{i} . \tag{9-6b}
\end{align*}
$$

9-3.1 RELIABILITY IMPROVEMENT

The reliability functions for a system with m parallel (1 -out-of-m: G, hot standby) elements ($m=1,2,3,4,5$) and $\lambda=\lambda_{i}=$ corrstant are plotted in Fig. 9-1.

Another method of measuring reliability improvement is to culculate the ratios (or differences) in STF of two systems. Table 9-1

Willam H. Von Alver, Ed., Hieliability Enquneoring. © 1964 by AHINC Research Corporation. Reprinind by permission of Prentice-Hall, Inc., Englev,ood Cliffs, N.J.
figurie 9.1. Reliebility Function for Systerns With m Idensical, Active. Parallel Lltements, Ěach With Constant Failure Raie λ (i-out-af.m:G)

TABLE 1
RATIOS OF MTF'S FOR m ACTIVEPARALLEL ELEMENTS ${ }^{2}$

m	$\theta_{m} \theta_{1}$	$\theta_{m} / \theta_{m-1}$
1	1.00	-
2	1.50	1.50
3	1.83	1.22
4	2.08	1.14
5	2.28	1.10

William H. Von Alven, Ed., Relibbility Envineeriny, $\Theta 1984$ by ARINC Reseerch Corporation. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
gives the ratios of $M T F$ for θ_{m} / θ_{1} and $\theta_{m} / \theta_{m-1}$, for $m=1,2,3,4,5$;
where $\theta_{i}=M T F$ for i elements as given by Eq. 9-6b.
From Table 9-1 it can be seen that the $\theta_{m} / \theta_{m-1}$ maximum occurs when $m=2$.

The improvements are, in most cases, the maximum that can be achieved. If the elements have more than one failure mode and/or if switching is imperfect, the effectiveness of the redundancy is reduced.

9-3.2 REDUNDANCY VERSUS IMPROVED ELEMENTS

A system designer may have the option of adding redundant elements or using improved elements in a nonredundant configuration to increase reliability (Refs. 1 and 2). The designer must consider effectiveness, cost, weight, maintenance, and other related considerations in making his choice.

Case 5. Two alike elements are connected in active-parallel (Case 2); their MFF is $3 /(2 \lambda)$, from Eq. 9-4a. To obtain the same $M T F$ with a single improved element, the improved element must have $X^{\prime}=2 \lambda ; 3$.

The s-reliability R_{s} of the improved element is $\quad R_{5}=e^{-\lambda^{\prime} t}=e^{-2 \lambda t / 3}$
$M T F_{s}=\frac{1}{\lambda^{\prime}}=\frac{1}{2 \lambda}$
The s-reliabilities R_{2} and R_{s} are plotted in

Wiltiam H. Von Alven, Ed., Relibility Enpinsering, 0 193A by ARINC Research Corporation. Reprinted by permistion of Prentice-Hall, Inc., Englewood Cliffs, N.J.

FIGURE 9-2. Survivor Functione for Two Pirticular Systems With the Same MTF ${ }^{2}$

Fig. 9-2. From the figure, the redundant system has the greater reliability up to $\lambda t \approx$ 1.75. After that, the improved singie-lement system is the more reliable. The point of intersection of the two functions will change if more redundant elements are added, if the degree of element improvement varies, or if standby redundancy is used.

In redundancy applications, there is usually one time, say t^{\prime}, when the reliability of a nonredundant system with improved elements is equal to the reliability of a redundant system with less reliable elements. When $t<t^{\prime}$, the redundant system has the greater reliability. When $i>t$, the improvedelement system is superior. The choice of the system contiguration depends on the ratio of element life to mission time.

6A THE s-NORMAL DISTRIBUTION

The s-normal distribution is useful to describe many systems whose failure rate increases "to in finity". Its $p d f$ is

$$
\begin{equation*}
f(t)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(-\frac{t-\mu}{\sigma}\right)^{2}\right] \tag{9-8}
\end{equation*}
$$

where
$\mu=$ mean time to failure
$\sigma=$ tandard deviation

We cleo introduce the following notation.

$$
\begin{aligned}
\text { gouf }(z)= & C u f \text { of the standard s-normal } \\
& \text { (Gaussian) cistribution }(\mu *=1, \\
& \sigma=1), \text { the probability of failure) }
\end{aligned}
$$

zauf $(z)=S f$ of the standard s-normal distribution (the reliability; it is the complement of the gauf(z). (the reluability)
Case 6. Two elements in active parallel redunduniny (1-out-of-2:G, het stand5y); єaci has an 8 -normal distribution of time to failure with parameters μ_{a}, σ_{a} and μ_{b}, σ_{j}. Define

$$
\begin{equation*}
z_{a}=\frac{--\mu_{a}, z_{b} \equiv \frac{t-\mu_{b}}{\sigma_{b}} .}{} \tag{9.9}
\end{equation*}
$$

From Eq. 8.3, the probabiiity of failure is

$$
\begin{equation*}
\bar{G}_{6}=\operatorname{gauf}\left(z_{6}\right) \operatorname{gauf}\left(z_{b}\right) \tag{9.10}
\end{equation*}
$$

To illustrate Case 6, assume that the two components, A and B , have the following parameters:

$$
\begin{array}{ll}
\mu_{a}=300 \mathrm{hr} & \mu_{b}=400 \mathrm{hr} \\
\sigma_{a}=40 \mathrm{hr} & J_{b}=60 \mathrm{hr} \tag{9-11}
\end{array}
$$

In order to evaluate the reliability of this redundant unit at, say 350 hr , the following computation is performed using Eq. 9-9:

$$
\begin{align*}
& z_{a}=\frac{350 \mathrm{hr}-300 \mathrm{hr}}{40 \mathrm{hr}}=1.25 \\
& z_{b}=\frac{350 \mathrm{hr}-400 \mathrm{hr}}{60 \mathrm{hr}}=-0.833 \tag{9-12}
\end{align*}
$$

Now refer to the tables of the s-normal distribution.

Uareliability or probability of failure $=\operatorname{gauf}(1.25) \operatorname{gauf}(-0.833)=$

$$
\begin{equation*}
0.8944 \times 0.2026=0.1812 \approx 0.18 \tag{9-13}
\end{equation*}
$$

9.5 OTHER CONFIGURATIONS

Table 9.2 lists the reliability of several combinations of elements. The last column shows the $M T F$ under the assumption that all elements have an identical constant failure rate.
TABLE 9-2. RELIABILITY FUNCTIONS FOR VARIOUS ACTIVEPARALLEL (1-out-of-n: G) CONFIGURATIONS ${ }^{2}$

Reliability Block Diagram	Configuration	Reliability Function, $R(t)$	MTF

William H. Von Alven, Ed., Reliability Engineering, © 1964 by ARINC Research Corporation. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, N.J.
TABLE 9-2. RELIABILITY FUNCTIONS FOR VARIOUS ACTIVE-PARALLEL (1-our-of-n: G) CONFIGURATIONS ${ }^{2}$ (cont'd)

	4. Series-Parallel $m \times n$ (a) General case 1 (b) Identical elements in units (c) Identical elements	$\prod_{i-1}^{n}\left[1-a_{1 j}(t) q_{2 j}(t) \ldots q_{m 1}(t)\right]$ $\prod_{i=1}^{n}\left[1-a,(r)^{m}\right]$ $\left[1-q(t)^{m}\right]^{n}$	$\frac{1}{\lambda} \sum_{i=1}^{n}\left(-1 \mu^{+}\binom{n}{i} \sum_{-1}^{j m}-\frac{1}{i}\right.$
	5. Parallel-Series 2×2 (a) General case (b) Identical elements in paths (c) Identical elements	$1-\left[1-p_{11}(t) p_{12}(t)\right]\left[1-p_{21}\left(t \mid p_{22}(t)\right.\right.$ $1-\left[1-p_{1}(t)^{2}\right]\left[1-p_{2}(t)^{2}\right]$ $1-\left[1-p(t)^{2}\right]^{2}$	$\frac{3}{4 \lambda}$

TABLE 9-2. RELIABILITY FUNCTIONS FOR VARIOUS ACTIVEPARALLEL (1-out-of-n: G) CONFIGURATIONS ${ }^{2}$ (comt'd)

	6. Parallel-Series $\boldsymbol{n} \times \boldsymbol{n}$ (a) General cast (b) Identical elements in paths (c) Identical elements	$\begin{gathered} 1-\prod_{i-1}^{m}\left[1-p_{i 1}(t) p_{i 2}(t) \ldots p_{i n}(t)\right] \\ 1-\left[1-p_{1}(t) p_{2}(t) \ldots p_{n}(t)\right]^{m} \\ 1-\left[1-p(t)^{n}\right]^{m} \end{gathered}$	$\frac{1}{n \lambda} \sum_{i=1}^{m} \frac{1}{i}$
	7. Partiai Redundancy (require at least k satisfactory elements) (a) Identical elements	$\sum_{i-k}^{m}\binom{m}{k} p(t)^{j}[1-p(t)]^{m-i}$	$\frac{1}{\lambda} \sum_{i=k}^{m} \frac{1}{i}$
Element ij refers to the element in the ith row and j th column. $i=1,2, \ldots, m ; j=1,2, \ldots, n$	Notation $\begin{aligned} \rho(t) & =\text { element reliabil } \\ & =\int_{t}^{\infty} f(t) d t \\ q(t) & =1-\rho(t) \\ & =\text { element unrelia } \end{aligned}$	function ; ility function. When elements pdf with $p(t)=e^{-\lambda}$	exponential failure rate λ, $=1-e^{-\lambda r} .$

Notation for Table 9-2:

$$
\begin{aligned}
& p_{i}= \text { survival probability of element } i \\
& q_{i}=1-p_{i} \\
& \lambda= \text { common constant failure rate } \\
& \text { for last column. }
\end{aligned}
$$

If the failure rates are neither common nor constant, the MTF is tedious and difficult to calculate. As an example, assume the redundant system in Fig. 9-3. System reliability can be determined from

$$
\begin{align*}
& R_{s}(t)=e^{-\lambda_{c} t}\left[e^{-\lambda_{b} t}+e^{-\lambda_{c} t}\right. \\
& \left.-e^{-\left(\lambda_{b}+\lambda_{c}\right)}\right] \times\left[e^{\left(\lambda_{d}+\lambda_{e}\right) t}\right. \\
& +e^{-\lambda_{l} t}-e^{-\left(\lambda_{d}+\lambda_{e}+\lambda_{f}\right) t} \mid \tag{9-14}\\
& =\sum_{i=1}^{5} e^{-\lambda_{i} t}-\sum_{l=6}^{2} e^{-\lambda_{i} t}, \tag{9-15}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda_{1} \equiv \lambda_{a}+\lambda_{b}+\lambda_{f}=0.020 \\
& \lambda_{2} \equiv \lambda_{a}+\lambda_{b}+\lambda_{d}+\lambda_{e}=0.022 \\
& \lambda_{3} \equiv \lambda_{a}+\lambda_{c}+\lambda_{d}+\lambda_{e}=0.027 \\
& \lambda_{4} \equiv \lambda_{a}+\lambda_{c}+\lambda_{f}=0.025 \\
& \lambda_{s} \equiv \lambda_{a}+\lambda_{b}+\lambda_{c}+\lambda_{d}+\lambda_{e}+\lambda_{f}= \\
& 0.037 \\
& \lambda_{6} \equiv \lambda_{a}+\lambda_{b}+\lambda_{d}+\lambda_{c}+\lambda_{f}=0.027 \\
& \lambda_{7} \equiv \lambda_{a}+\lambda_{c}+\lambda_{d}+\lambda_{c}+\lambda_{f}=0.032 \\
& \lambda_{B} \equiv \lambda_{a}+\lambda_{b}+\lambda_{c}+\lambda_{d}+\lambda_{c}=0.032 \\
& \lambda_{9} \equiv \lambda_{a}+\lambda_{b}+\lambda_{c}+\lambda_{f}=0.030 . \tag{9-16}
\end{align*}
$$

The MTF is computed by integrating the reliability function:

$$
M T F=\sum_{i=1}^{5} \frac{1}{\lambda_{i}}-\sum_{i=6}^{9} \frac{1}{\lambda_{i}}=199.5-
$$

$$
\begin{equation*}
132.9=66.6 \tag{9-17}
\end{equation*}
$$

$9-6$ s-DEPENDENT FAILURE PROBABIL. ITIES

Up to this point, it has been assumed that the failure o! an active redundant element has no effect on the other active elements. However, the opposite condition often arises-the failure of one element does affect the others. For example, consider the block diagram in Fig. 9-4. A and B are both fully energized, and normally share or carry half the loas-L/2. If either A or B lails, tise survivor must then carry the full load. Hence, the probability that one (say B) fails depends on the state of the other if failure probability is related to load or stress. A simple example would be a 2 -engine airplane which, if one engine fails, can still keep flying. However, the survivirg engine now has to carry the full load and has a higher probability of failing.

For this relatively simple example, the reiiablity function can be derived by considering all possible ways of system success, as shown in Fig. 9-5. The bar above a letter represents failure of that element. The prime represents operation of that element

For convenuence, the λ has been taken as dimensionless.
Actually, the MTF will have the reciprocal dimension of the λ.
William H. Von Alven, Ed., Reliability Engineering, © 1964
by ARINC Research Corporation. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, N,J.

FIGURE 9.3. Illustrative System ${ }^{2}$

ANCP 708-i57

veliam H. Von Alven, Ed., Awimbility Envineering, 0 1884 by ARIMC Research Corporation. Reprinted by permission of Prentice-finl, Inc., Englewood Cliffs, NJ.

FIGURE 9-4. System With Lasd Dependent Failure ${ }^{2}$
under full load; absence of a prime represents operation under half load.

The derivation is as follows. Let

$f(t)=$ failure-time pdf of each element when both elements are operating;
$F(t)=S f$ correponding to $f(t)$
$g(t)=$ element failure-time pdf of the unfailed element when one element has failed;
$\boldsymbol{G}(t)=$ Sf corresponding to $\boldsymbol{g}(t)$
$t_{1}<t=$ some point in time
$L=$ full load
The system operates satisfactorily at time t if either A or B both are operating successfully. Under the assumption that the elements are s-independent if both are operating, the prebability that both will operate until time t is

$$
\begin{equation*}
[F(t)]^{2} \tag{9-18}
\end{equation*}
$$

The pdf for one element failing at time t_{1} and the other surviving to t_{1} under $L / 2$ and from t_{1} to t under L is

$$
\begin{equation*}
f\left(t_{1}\right) F\left(t_{1}\right) G\left(t-t_{1}\right) \tag{9-19}
\end{equation*}
$$

Since t_{1} can range from 0 to t, this $p d f$ is integrated over that range, and the resulting probability is doubled because the event can occur in either of two ways. Hence,

$$
\begin{align*}
& R(t)=[F(t)]^{2}+2 \int_{0}^{1} f\left(t_{1}\right) \\
& F\left(t_{1}\right) \bar{G}\left(t-t_{1}\right) d t_{1} \tag{9.20}
\end{align*}
$$

Succens = Conditions (1), (2), or (3)
FIGURE 9.5. Time Sequence Disgram ${ }^{2}$

Special Case. The element failure times are exponentially distributed and each has a parameter λ under load $L / 2$, and λ^{\prime} under load L. Define

$$
\begin{equation*}
k \equiv \lambda^{\prime} / \lambda . \tag{9-21}
\end{equation*}
$$

The solution of Eq. 9.20 is

$$
\begin{align*}
R(t)= & {\left[2 \exp \left(-\lambda^{\prime} t\right)-k \exp (-2 \lambda t)\right] / } \\
& (2-k), k \neq 2 \tag{9-22}\\
R(t)= & (2 \lambda t+1) \exp (-2 \lambda t), k=2 \tag{9-23}
\end{align*}
$$

The system MTF is

$$
\begin{equation*}
M T F=\frac{1}{\lambda}\left(\frac{1}{n}+\frac{1}{2}\right) . \tag{9-24}
\end{equation*}
$$

When $k=1$, load-sharing is not present, i.e., increased load does not affect the element failure probability. This assumption was made in the previous discussions of active-parallel redundancy. If there were only one element, it would be operating under full load; therefore, the system MTF would be $1 / X^{\prime}$ $=1 /(k \lambda)$.

A single improved element can be used as an alternative to redundancy when this s-dependent model is assumed. The effects of using improved single elements or redundant standard elements can be illustrated as follows. Consider

A: Single standard element; $\lambda=1 / 50$
B: Single improved element; $\lambda=1 / 100$
C: s-Depelddent model, standard elements; $\lambda($ half load $)=1 / 100, \lambda^{\prime}($ full load $)=$ $1 / 50$.

The MTF's and s-reliability functions of these three configurations are

$$
\begin{align*}
& M T F_{A}=50 \tag{9-25a}\\
& R_{A}(t)=e^{-t / 50} \tag{9-25b}\\
& M T F_{A}=100 \tag{9-26a}\\
& R_{B}(t)=e^{-1 / 100} \tag{9-26b}\\
& M T F_{C}=100 \tag{9-27a}\\
& R_{C}(t)=e^{-t / 50}(1+t / 50) . \tag{9-27b}
\end{align*}
$$

The 8 -reliaibility functions are shown in Fig. 9-6. Although systems B and C have the same MTF, the redundant system has greater reliability in early life. After approximately 125 hours, the improved single-element system is superior. If such factors as effectiveness, cost, weight, and complexity are approximately equivalent for systems B and C, the choice would depend on the Required Time of Operation for the system.

9-7 STANDBY REDUNDANCY

In a system of redundant elements that are completely on standby, the standby elements are cold (have zero failure rate) until the primary element fails (Ref. 2). The necessary switching is perfect.

Case 7. The system contains two elements, A and B; the reliability function can be found as indicated.

Wiltiam H. Von Alven, Ed., Reliability Engineering, © 1964 by ARINC Researcis Corporation. Reprinted by permission of F-entice-Hall, Inc., Englewood Cliffs, N.J.

FICUIRE 9-6. s-Rellability Functions for Redundant Cunfiguration (Dependont Model) ard Nonredunaiant Configurations ${ }^{2}$

The system will be succemful at time t if either (letting A be the primary element):

1. A succeeds up to time t, or
2. A fails at time $t_{1}<t$ and B operates from t_{1} to t.
Fig. 9-7 shows these two conditions.

$$
\begin{equation*}
R(t)=F_{e}(t)+\int_{0}^{t} f_{e}\left(t_{1}\right) F_{0}\left(t-t_{1}\right) d t_{1}, \tag{9-28}
\end{equation*}
$$

The first term of Eq. 9-28 is the probability that element A will succeed until time t. The integrand is the pdf of A failing exactly at t_{1} and B succeeding for the remaining ($t-t_{1}$) hours. Since t_{1} can range from 0 to t, t_{1} is integrated over that range.

Case 8. Same as Case 7, but for the exponential case where the element failure rates are λ_{a} and λ_{b},

$$
\begin{align*}
R_{g}(t) & =\frac{\lambda_{b}}{\lambda_{b}-\lambda_{a}} e^{-\lambda_{a} t} \\
& -\frac{\lambda_{a}}{\lambda_{b}-\lambda_{a}} e^{-\lambda_{b} t}, \lambda_{a} \neq \lambda_{b} \tag{9-29a}\\
R(t) & =e^{-\lambda t}(1+\lambda t), \lambda_{a}=\lambda_{b}=\lambda . \tag{9-29b}
\end{align*}
$$

It does not matter whether the more reliable element is used as the primary or the standby element.

Case 9. Same as Case 8 except there are n elements each with parameter λ.

$$
\begin{align*}
& R_{9}(t)=e^{-\lambda} \sum_{r=0}^{n} \frac{(\lambda 1)^{r}}{r!} \tag{9-30a}\\
& M T F_{9}=n / \lambda \tag{9-30b}
\end{align*}
$$

William H. Von Alven, Ed., Reliabılity Engineering, © 1964 by ARINC Research Corporation. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

FIGURE 1-7. Time Sequence Diagram for Standby Redundancy ${ }^{2}$

9.7.1 SWITCHING FAILURES

Cone10. The following notation will be used for a 2 -element standby redundant unit requiring a decision-and-switching device that switches in one direction only (Ref. 2):
$f_{0}(t), f_{b}(t)=\begin{aligned} & \text { failure } p d f: s \text { of elements } A \text { and } \\ & \end{aligned}$

$$
\begin{aligned}
& f_{b^{\prime}}(t)=\text { failure pdf of element B when } \\
& \text { on standby }
\end{aligned}
$$

$f_{x}(t)=$ conditional contact failure pdf (failure of the contact to maintain a good connection, given that a good connection initially existed)
$f_{y}(t)=$ conditional dynamic failure pdf (failure to switch, given that A has failed)
$f_{z}(t)=$ conditional static failure pdf (switching when not required) required)
$F_{\alpha}, F_{\alpha}=C d f$ and $S f$ corresponding to f_{a}, $a=a, b, b, x, y, z$
$f_{x}(t), f_{y}(t)$, and $f_{z}(t)$ refer to decision-and-switching device failures which may not be time-dependent. If these failures are not time-dependent, the appropriate failure pdf is replaced by a constant probability of failure.

$$
\begin{align*}
& a_{10}(t)=F_{x}(t)\left\{F_{z}(t) F_{a}(t)+\int_{0}^{1}\left[F_{a}\left(t_{1}\right)\right.\right. \\
& f_{z}\left(t_{1}\right) F_{y}\left(t-t_{1}\right) F_{b}\left(t_{1}\right) F_{b}\left(t-t_{1}\right) \mid \\
& d t_{1}+\int_{0}^{1}\left[f_{z}\left(t_{2}\right) F_{z}\left(t_{2}\right) F_{y}\left(t_{2}\right)\right. \\
& \left.F_{b}\left(t_{2}\right) F_{2}\left(t-t_{2}\right) F_{b}\left(t-t_{2}\right) d t_{2}\right\} \tag{9-31}
\end{align*}
$$

In Eq. 9-31, the first term inside the brackets represents the probability that A operates to t without premature switching. The second term represents the probability that a sratic failure occurs at time $t_{1}<t$, but B operates to t. The last term represents the probability that A fails at time $t_{2}<t$ and the decision-and-switching device switches to B (no dynamic failure), which operates to t.

This equation represents a general case in that the following pomibilities are included:

1. A and B can be different elements.
2. A static hilure can occur if B is energized, resulting in no output or a false indication of system failure. If a static failure cannot occur when B is energized, then $F_{z}(t)$ $=1$.
3. B can fail while on standby, and its failure pdf can be different from that when B is energized. If B is a "cold" rather than a "warm" or "hot" reserve, $f_{b}(t)=0, F_{b}(t)=1$.

Case 11. Same as Case 10, but identical elements (A and B) with constant failure rate $\lambda_{A}=\lambda_{B}=\lambda$ and cold standby. Eq. 9-31 becomes

$$
\begin{align*}
Q_{11}(t)= & e^{-\left(\lambda+\lambda_{z}+\lambda_{x}\right) t}\left[1+\lambda_{z} t+\frac{\lambda}{\lambda_{y}}\right. \\
& \left.\left(1-e^{-\lambda_{y} t}\right)\right] . \tag{9-32}
\end{align*}
$$

Case 12. Same as Case 11, but

$$
\lambda_{z}=\lambda_{y}=\lambda_{z}=0 .
$$

then, since

$$
\lim _{\lambda_{y} \rightarrow 0}\left\{\frac{1-e^{-\lambda_{y}}}{\lambda_{y}}\right\}=t
$$

$$
R_{12}(t)=e^{\lambda t}(1+\lambda t) .
$$

which agrees with Eq. 9-29b, as it should. The effects of imperfect switching also are analyzed in Refs. 4,6,7.

9-7.2 OPTIMUM DESIGN: GENERAL MODEL

Case 13. There are n redundant paths with $(n-1)$ in cold standby, and each path requires a switching device. In this model, the munitor represents the failure-detection and switching-control functions. These two functions can be considered as one for reliability purposes if it is assumed that the probability of compensating errors is negligible. All failure distributions have constant failure rates.

The following assumptions are made when
computing the reliability of these systems (Ref. 2):

1. Switching is in one direction only.
2. Standby (reserve) paths cannot fail if not energized.
3. Switching devices ought to respond only when directed to switch by the monitor; false switching operation (static failure) is detected by the monitor as a path failure, and switching is initiated.
4. Switching devices do not fail if not energized.
5. Monitor failure includes both dynamic and static failures. The monitor is a "series" element in the system.

Define terms as

$\lambda=$ total (sum) failure rate of the series elements in a path
$\lambda_{s}=$ failure rate of the switching device (includes contart failure)
$\lambda_{m}=$ failure rate of the monitor
then. for n total paths,

$$
\begin{align*}
R_{13}(t)= & e^{\lambda_{m} t\left\{e^{\left(\lambda+\lambda_{s}\right) t}\right.} \\
& \left.\times \sum_{i=0}^{n} \frac{\left|\left(\lambda+\lambda_{s}\right) t\right|^{i}}{1}\right\} \tag{9-33}
\end{align*}
$$

To illustrate the reliability gain provided by this model, assume that the system specification requires a high reliability for a missior of t hours. A nonredur.dant system therefore would have a reliability of

$$
\begin{equation*}
R_{1}(t)=e^{\lambda t} \tag{9-34a}
\end{equation*}
$$

since no switching is required. The redundant system would have an s-reliability given by Eq. 9-33.

$$
\begin{equation*}
R_{n}(t)=R_{13}(t) \tag{9-34b}
\end{equation*}
$$

Define $\tau \equiv \lambda t$ and substitute for t in Eq. 9-33, except in the λ_{m} term.

$$
\begin{align*}
R_{13}(\tau) & =\exp \left(-\lambda_{m} t\right) \exp \left[-\left(1+\frac{\lambda_{s}}{\lambda}\right) \tau\right] \\
& \sum_{i=0}^{n-1} \frac{\left(\left(1+\frac{\lambda_{2}}{\lambda}\right) r 1^{\prime}\right.}{i!} \tag{9-35a}
\end{align*}
$$

$$
\begin{equation*}
Q_{13}(\tau)=\exp \left(-\lambda_{m} t\right) \operatorname{csqfc}\left(2 \pi\left(1+\frac{\lambda_{A}}{\lambda}\right)_{, 2 n}\right) \tag{9-35h}
\end{equation*}
$$

where

$$
\begin{aligned}
\operatorname{csq} f\left(x^{2}, \nu\right)= & \frac{\text { chi square } C d f \text { with } v}{\text { degrees of freedom }} \\
\operatorname{csq} f c\left(x^{2}, \nu\right)= & 1-\operatorname{csqf(}\left(x^{2}, \nu\right)= \\
& \begin{array}{l}
\text { complement of the } \\
\\
\\
c s q f
\end{array}
\end{aligned}
$$

(named in analogy with the error function)

The maximum reliability for a fixed τ that can be achieved, as $n \rightarrow \infty$, is $\exp \left(-\lambda_{m} t\right)$. Therefore, if $\lambda_{m} \geqslant \lambda$. (monitor is worse than an element) the optimum design has 1 element and no switching/monitoring.

Eq. 9-5 is a function of $\lambda_{s} / \lambda, \lambda_{m}$, and τ. The mission reliability of the redundant system can be calculated as a function of the parameters in Eq. 9-35. Table 9-3 and Figs. $9-8$ and 9.9 show some of these calculations.

Table 9-3 shows how system reliability is influenced by the number of paths, if the switching device and the monitor have failure rates that are $1,1 / 10$, and $1 / 100$ as great as the path failure rate.

In Fig. 9-8 the reliability of the redundant system is given as a function of the number of paths for various ratios of λ_{m} / λ when $R_{13}(t)$ $=0.80$; arbitrarily, $\lambda_{s} / \lambda=1 / 1000$. Fig. $9-9$ is similar except that $\lambda_{m}^{s} / \lambda=1 / 1000$, and λ_{s} / λ varies.

The following general conclusions , be drawn from this paragraph:

1. As the number of redundant paths increases, the mission reliability approaches the reliability of the monitor.
2. When the failure rates of the path, the switching devices, and the monitor are equal; standby redundancy with two paths results in a mission reliability considerably less than that of a single nonredundant path.
3. For systems where the switching-device and monitor failure rates are less than the path failure rate, the greatest increase in reliability occurs when one redundant path is added to a single path.

TABLE Q3. EFFECT OF REDUNDANCY, CASE is

1°	4.88	4.88	4.88	9.52	9.52	0.52	18.1	18.1	18.1
$\left(1^{\circ}\right)$	(13.9)	(5.81)						(18.4)	

2
Cold standoy; a elements total; imperfect switch and monitor; constant failure rates.
Failure probabilities listed in the body of the Table.

	$T=0.05$			$T=0.10$			$\boldsymbol{T}=0.20$		
$n \quad \gamma$	1	0.1	0.01	1	0.1	0.01	1	0.1	0.01
$1 *$	4.88	4.88	4.88	9.52	9.52	9.52	18.1	18.1	18.1
$\left(1^{* *}\right)$	(13.9)	(5.81)	(4.97)	(25.9)	(11.3)	19.66)	(39.3)	(21.3)	(18.4)
2	5.32	0.654	0.174	11.1	1.47	0.578	23.2	4.05	1.98
3	4.95	0.502	0.052	9.62	1.11	0.192	18.8	2.13	0.319
\cdots	4.88	0.499	0.050	9.52	0.995	0.100	18.1	1.98	0.200

- No monitor or switcis
**To show trends only, actually it is most impractical to have svitch and monitor with only 1 unit

$$
\begin{aligned}
\tau \equiv \lambda_{t}, \lambda & =\text { element failure rate } \\
\lambda_{s}, \lambda_{m} & =\text { switch and monitor falure rates, respectively } \\
\gamma \equiv \lambda_{s} / \lambda & =\lambda_{s} / \lambda \text { for this Table }
\end{aligned}
$$

4. For a given path and switching-device failure rate, reliability improvement increases rapidly as the monitor failure rate decreases and the number of redundant paths increases. The same is true if the monitor failure rate is held constant and the switching-device failure rate decreases.
5. Important improvement in mission reliability through redundancy results from the use of switching devices and monitors that are much more reliable than the path being switched.

9.8 ACTIVE VERSUS STANDBY REDUNDANCY

For the basic models s-independent elements, perfect switching, and perfect reliability of deenersized elements), the
reliability equations (along with intuition) indicate that standby redundancy is superior to active redundancy.

However, elements are not always s-indepencrat: switching is rarely perfect: and certain parts and components can fail without being energized. Therefore it is most unlikely that the simple standby system analyzed so far will be representative of practice.

9.9 MAINTENANCE CONSIDERATIONS

The prevous analyses of redundancy were' based on the assumption of unattended system operation. If mantenance is considered. even greater relability insprovements can be achieved. See also Refs. 4.7.

William H. Von Alveri, Ed., Relıability Engıneerıng, © 1964 by ARINC Research Corporation. Reprinted by perm.ssion of Prentice-Hall, Inc., Englewood Cliffs, N.J.
FIGURE 9.8. Mission Reliability for n Redundant Paths, Case 13, when

$$
R_{1}(t)=0.80(1=0.223) \lambda_{s} / \lambda=0.001(\text { Ref. } 2) .
$$

FIGURE 9.9 Mission Reliability for n hadundant Paths, Case 13, when $R_{1}(t)=0.80(\tau=02.33)$

$$
\lambda_{m} \lambda=000 ;(\text { Ref } 2)
$$

9-9.1 PERIODIC MAINTENANCE (Ref. 2)

Case 14. The following procedure will be assumed:
(1) Periodic mantenance is performed every T hours. starting at time 0 . (2) Every element is checked, and any one which has failed is replaced by a like-new and statistically identical component.

Maintenance is perfect in that repaired/replased units are good-as-new. no damage is done to the rest of the system. and the repared system is good-as-new. In short. every T hours the system is restored to like-new.

Deffin.

$$
\tau-t-\jmath T .0 \leqslant:<T
$$

where

$$
\begin{aligned}
\tau= & \text { time smee latest (number } / 1 \\
& \text { repair } \\
J= & 0.1 .2 . \text { Irepar number }
\end{aligned}
$$

and
$R_{1 \&}=R_{5}(i)$ she r-seizabilaip fuactuon of a medurimi syxyem an wituch swaviesucxe ar performed *KㄷT T Bozs
Let $R(s)$ be tive s-actubality of she syucte
 Ther for $f=1 .==0$.

$$
\begin{equation*}
B_{y}(T)=R(T) \tag{9.36}
\end{equation*}
$$

If $j=2$ and : $=0$. ibe system has to operaie ihe fins T boans grihoul failure of any redurdant confucuration ifter repiacerment of all failed efements anotiter T hours of falun-free sysets operaison ane reciured: herxe

$$
\begin{equation*}
R_{T}(2 T)=|R\langle T\rangle|^{2} \tag{9.37}
\end{equation*}
$$

If $0<=<T$. iben an addissonal : hours of failurefree system opertison are required. and

$$
\begin{equation*}
R_{r}(2 T \div:)=\{R(T)\}^{2} R(:) \tag{9.38z}
\end{equation*}
$$

In gemeral.

$$
R_{1 s}=R_{r}\left(T:=1=\left[R\left(T \mid Y^{\prime} R::\right)\right.\right.
$$

where

$$
\begin{align*}
& j=0.1 .2 . \ldots: 0<:<T . \\
& M T F_{14}=\sum_{s=0}^{-} \int_{i r}^{(t \cdot 1) \pi} R_{T}(t) d t . \\
& \text { (t=jTt: }) \\
& =\left\{\sum_{r=0}^{-} \mid R(T) Y^{\}} \int_{0}^{r} R(I) d s\right. \\
& =\frac{\int_{0}^{5} R(T I d T}{1-R(T)} .
\end{align*}
$$

The effect of periodic inaintenance can be illustrated in the example that follows. Two identical elements with constant failure rates of $1 /\left(100 \mathrm{~h}^{-}\right)$are placed in an active-parallel confipuration (l-out-of-2:G, hot standby). Compare the reliability functions and $M T F ' s$
for $T=150.100 .50$. and 10 3s (Ref. 2). live Eq. 9-di for R(1).

Retivbility funcesoes follow:

1. No maxikaticte: $(T \times x)$

$$
\begin{equation*}
R_{y}(t)=R(t)=2 c \times 1 * \theta-c \tag{9-50}
\end{equation*}
$$

2. With manterance: $(T \times j T \div=0<:$ $<\pi$

For $T=150 \mathrm{hr}:$

$$
\begin{align*}
& R_{z}(8)=\left\{3 e^{1.3}-e^{-1}\right\}^{\prime} 13 e^{-5130} \\
& \text { - } e^{501} \mathrm{~J} . \tag{9-41}
\end{align*}
$$

For $T=100$ ar:

$$
\begin{array}{rlr}
R_{r}(j)= & 12 e^{2}-c^{2} Y \mid 2 c & 1: 00 \\
& -c^{130} \mid . & (9-42) \tag{9-42}
\end{array}
$$

For $T=\mathbf{j 0 h r}$:

$$
\begin{align*}
R_{\mathrm{r}}(t)= & {\left[2 c^{0.3}-e^{1} \gamma \mid 2 e\right.} \\
& \left.-e^{2 \cdot 30}\right] . \tag{9-+3}
\end{align*}
$$

For $T=10 \mathrm{hr}:$

$$
\begin{align*}
& R_{r}(l)=\left[2 e^{0.1}-e^{0.2}\right\} \\
& {\left[2 k^{2,100}-e^{1 / .1}\right]} \tag{9-44}
\end{align*}
$$

The reliability functions ane photied in Fig. 9.10. From 0 to 10 hr . all five functions are xdentical sner $)=0$ over this period for each system.

MTF is calculated using Eq. 9-39.

$$
\begin{equation*}
=\frac{150 \cdot 30 r T 30}{1} \frac{T 100}{T} \frac{200 \%}{T 1100} \tag{9-45}
\end{equation*}
$$

The .MTF's for the various T's follow:

T,hr	MTF $_{\mathbf{2 4}} \mathbf{~ h r}$
∞	150
150	179
100	208
50	304
10	1097

Considerable increase in MTF (and reliability) can be achieved by a perfect preventive maintenance policy.

9.9.2 CORRECTIVE MAINTENANCE

Reliability functions for some simple 2 -unit redundant designs, for which repair of a failed unit is possible, were developed by Epstein and Hosford, and are summarized in this paragraph (Refs. 2 and 3).

At $t=0$. all clements are good. Repair starts imnediately upon failure of a unit and is perfect. The failure and reparr rates are
ronstant (inciependent of time). Three desims will be consivered - Gawes 15.16. and 17

Case 15. Two units in active redundancy. The constar:t fallune r.e ef each unit is λ and the constant repair rate is $\dot{\mu}$.

$$
\begin{equation*}
a_{1 s}(t)=\frac{\cdot r^{r^{\prime 2} 2^{\prime}}-\cdot_{2} \cdot 0^{\prime}}{i_{1}}, s_{1} \cdot s_{2} \tag{9-46}
\end{equation*}
$$

$$
\begin{equation*}
s_{t} \equiv{ }^{2} 4\left(3\left(\lambda^{2} \dot{\mu}\right)-\sqrt{\lambda^{2}+6 \lambda \mu+\mu^{2}}\right\} \tag{9-17}
\end{equation*}
$$

$$
s_{2} \equiv 2\left\{\left(3(\lambda+\mu)+\sqrt{\lambda^{2}}+\sqrt{2 \lambda \mu+\mu^{2}}\right)\right.
$$

$$
\begin{equation*}
M T F_{13}=\frac{3 \lambda+2}{2 \lambda^{2}} \tag{9-48}
\end{equation*}
$$

Case 16. Two uats in standby
redundmox. Conseant unit fatare sake $s \lambda$: constant unt repaír rate 25 ap.

$$
\begin{align*}
& s_{3}=42 \lambda+2 \sqrt{x^{2}+(\lambda \pi)} \tag{9.50a}
\end{align*}
$$

$$
\begin{align*}
& \text { VTF } \mathrm{ic}_{6}=\frac{3 \lambda-4}{\mathrm{~h}^{2}} \tag{9.51}
\end{align*}
$$

Case 17. Two uniss in ssandby medundmacy. It takes exactly : hours to repair a failed unit. Constant taifure rate $s \lambda$.

$$
\begin{align*}
& (1-(z-1) s i t . \tag{9.52}
\end{align*}
$$

where

$$
\begin{aligned}
|t: s| & =\text { peetent intequer }\langle t ; \because \\
t & =\text { exact number of failures }
\end{aligned}
$$

A plos of the reliability functions for these circuits is given in Fig. 9-11.

Wilimen H. Von Avon. Ed. Arti bility Enginatimg. C 1951 by ARINC Resewch Corporation. Reporinted by permasion of Prentice-Hall, Inc.. Englewood Cilfs, H.d

FIGURE 9.11. Comparion of s-Redibbility Functions for Throv Maintununce Situntians Cems 15, 16, and 17 (nef. 2).

REFERENCES

1. Findbook for Syteme Application of Redundency. US S Naral Applied Science Laboratory. 30 Aupuse 1966.
2. W. H. Alven. Ed., Retiebitity Engivering. Prentice-Hall. Inc.. Endewood CTiffs. New dersey, 1964.
3. B. Epetein and J. Howford, "Reliability of Some Two-unit Redundant Systems", Proceedings of the Sixth National Symposium on Reliebility and Qumity Control. 6. 469-88 (January 1960).
4. S. Oraki. "On a 2 -unit Standby-redundant System With Imperfect Switchover". IEEE Trunsactions on Reliability R-21. 20-24 Feb. 1972 (Corrections. ibid. p. 195, Aug. 1982).
5. S. Osak. "Retinbility .matysis of a 2 -umt Standby-redundant System With Preventive Maintenance". IEEE Transactions on Refisbility R-21 24-29, Feb. 1972 (Corrections, ibid. p. 195. Aup. 1972).
6. D. S. Taylor. "A Reliability and Comparative Anaiysis of Two Standby System Configurations". IEEE Transactions on Retiability R-22 13-13. April 1973.
7. D. K. Chow. "Reliabilty of Some Redundant Systems With Repair". IEEE Transactions on Reliability R-22. 223-238. Oct. 1973.

FIGUFE 10.1. Redundmen Tree Structure ${ }^{1}$
replace a failed element or path. Examples are standby, operating, and duplex.

For each of the redundancy forms, several major characteristics will be covered to permit uniformity of comparison. Each of the forms will be defined and illusirated. Where feasible, reliability block diagrams and the mathematicmi model for each form will be given. All of the time-dependent models assume that all components are good at time zero. In general, the redundancy models will yield increasing
failure rate (IFR) functions for similar elements. See also Chapters 8 and 9.

10-2 NONDFCISION REDUNDANCY

10-2.1 MOORE-SHANNON REDUNDANCY

Moore and Shannon (Refs. 2 and 3) proposed connecting the contacts of relays, with their coils connested in parallel, in physical series-parallel circuits in such a manner that

An idealized switch is defined as a ther. minal element where complete inolation exiuts between the control signal and switching path and which presents to the logic signal an infinite impedance ratio between desired and undesired transmiasion states. The analysis is not generally applicable, however, to 2 - and 3 terminal devices such as transiators and tunnel dioden. Furthermore, the MooreShannon theory mames only catastrophic failures; hence, drift faitures and aging effects are excluded. Time is not considered at all.

Three ascumptions are made in developing the mathematical mode.

1. The failure of any eiement is s-independent of the failure of any other element.
2. Only intermittent, complete failures are considered.
3. The probability of failure of an etement is defined for each operation and is the same for every element: time never appears explicitly.

Fig. 10-2 illustrates three elementary, redundant, relay contact networks considered by Moore and Shannon. If p is the probability that a single contact will operate properly, then the probability that two contacts will operate properly is \boldsymbol{p}^{2}. The probability that neither contact operates properly is $1-\boldsymbol{p}^{\mathbf{2}}$. Consequently, if two relay-contacts, physically in series, are used to connect a path, and both are operated simultaneously, the redundancy improves the reliability for opening the path, but reduces the reliability for closing the path. If four relay-contacts are connected in a physical series-parallel arrangt 'ant, as shown in Fig. 10-2(A), the probability of opening the path is $\left(1-p^{2}\right)^{2}$, and the probability of closing the path is

$$
\begin{equation*}
R=1-\left(1-p^{2}\right)^{2}=2 p^{2}-p^{4} \tag{10-1}
\end{equation*}
$$

The network illustrated in Fig. $10-2(B)$ is the dual of the one shown in Fig. 10-2(A); the probability of closing the path is

$$
\begin{equation*}
R=\left[1-(1-p)^{2}\right]^{2}=4 p^{2}-4 p^{3}+p^{4} \tag{10-2}
\end{equation*}
$$

(A)

101

(C)

FIGURE 10.2. Refoy Nerworks / lusterating Moare. Shemmon Redundency ${ }^{1}$

The network illustrated in Fig. 10-2(C) is slightly more complex because of the additional contact X_{5}; the probability of closing the path is

$$
\begin{equation*}
R=2 p^{2}+2 p^{3}-5 p^{4}+2 p^{5} \tag{10.3}
\end{equation*}
$$

These results may be peneralized to in. clude any complex redundant network between two points. If m contacts are used in a switching array between two points and if n of them constitute a subset of closed contacts, the probability of closing the path is

$$
\begin{equation*}
R=\sum_{n=0}^{m} A_{n} p^{n}(1-p)^{m \cdot n} \tag{10-4}
\end{equation*}
$$

where A_{n} is the number of combinations of the subsets which correspond to a closed path. Similarly, the probability of opening the path is

$$
\begin{equation*}
1-R=\sum_{n=0}^{m} B_{n}(1-p)^{n} p^{m \cdot n} \tag{10-5}
\end{equation*}
$$

where B_{n} is the number of subsets of n contacts such that if all contacts in a subset are open and all others closed, the path is open.

By using this approach, arbitrarily reliable relay networks can be built from arbitrarily poor (low reliability) relays, provided enough of the poor ones are used.

Time can be introduced explicitly if the following are assumed:

1. The niailure of any element is s-independent of the failure of any other element.
2. All failures are permanent; i.e., when an element fails, it remains in the failed condition.
3. The relimbility of the elements is known fas a function of time) and is the ame for every clement. Two failure distributions are defined:
$q_{a}(t)=$ probebility that a contact will fail to clowe during the interval 0 to t.
$p_{s}(t)=$ probebility that a contect will fail to open during the interval 0 to t.

It follows that:

1. The probebility that a contact will be cloved whenever it should be clowed during the interval 0 to t is

$$
\begin{equation*}
p_{a}(t)=1-q_{a}(t) \tag{10.6}
\end{equation*}
$$

This is the reliability of being clowed, defined for this interval.
2. The probability that a contact will be open whenever it should be open during the interval 0 to t is

$$
\begin{equation*}
q_{b}(t)=1-p_{b}(t) \tag{10-7}
\end{equation*}
$$

This is the reliability of being open, defined for this interval.

The total probability of failure of the circuit in the interval 0 to t is the sum of the disjoint probabilities of failure to close and failure to open. The probability that the circuit will fail to close at some time during the interval 0 to t is

$$
\begin{align*}
\operatorname{Pr}\{\bar{C}\} & =\sum_{n=0}^{4} B_{n}\left(1-p_{a}\right)^{n} p_{a}^{4-n} \\
& =\sum_{n=0}^{4} B_{n} q_{a}^{n}\left(1-q_{e}\right)^{4-n} \tag{10-8}
\end{align*}
$$

where

$$
\begin{aligned}
& C=\text { event of clocure (} C=\text { event of not- } \\
& \text { clowire). }
\end{aligned}
$$

Since

$$
\begin{align*}
B_{0} & =B_{1}=0, B_{2}=2, B_{3}=4, B_{4}=1, \\
A\{\{C\} & =2 q_{a}^{2}\left(1-q_{e}\right)^{2}+4 q_{a}^{3}\left(1-q_{e}\right)+q_{a}^{4} \\
& =2 q_{a}^{2}-q_{a}^{6} . \tag{10.9}
\end{align*}
$$

The probability of the circuit failing to open at some time during the inteival 0 to t is

$$
\begin{align*}
R(\delta) & =\sum_{n=0}^{4} A_{n} p_{b}^{2}\left(1-p_{b}\right)^{4-n} \\
& =4 p_{b}^{2}\left(1-p_{b}\right)^{2}+4 p_{b}^{2}\left(1-p_{b}\right)+p_{b}^{4} \\
& =4 p_{b}^{2}-4 p_{b}^{2}+p_{b}^{4} \tag{10-10}
\end{align*}
$$

where
$0=$ event of opening ($\delta=$ event of not-
spening).

Then, the total probability of circuit failure in the interval 0 to t is

$$
\begin{align*}
\operatorname{Pr}\{F\} & =\operatorname{Pr}\{D \cup C\}=\operatorname{Pr}\{O\}+\operatorname{Pr}\{C\} \\
& =2 q_{a}^{2}-q_{a}^{4}+4 p_{b}^{2}-4 p_{b}^{2}+p_{b}^{4} \tag{10.11}
\end{align*}
$$

where

$$
F=O \cup C
$$

The straight-line in each figure is the nonresundent case.

FIGURE 10.6. Schemstic Dimorom of a Diode and Transistor Ouad Bridge Network Illustrating Bineodel Series-paralle/ Rodundency'
structure is one in which elements are connected in a series-parallel configuration, and which is susceptible to two modes of failure, sucn as opens and shurts (Ref. 1). The reliabilities are all conditional on the set of events which are required for the elements to be con-:-ionally s-independent. For example, if four cransisfors are on the same chip, they will not be s-independent for many failure modes. Included in this form are what are commonly known as Quad configurations. A typical circuit is shown in Fig. 10-6 and the reliability block diagram in Fig. 10-7. The elements are s-independent of each other. They can fail either open or short.

The conditional reliability of the transistor Quad, where a is the probability of nonfailure of a transistor and p is the proportion of transistor failures due to opens, is (Ref. 4)

$$
\begin{aligned}
& R=a^{4}+4 a^{3}(1-a)+4 a^{2}(1-a)^{2} \\
& \quad 1 \quad[1+p(1-2 p)]+8 a(1-a)^{3} p(1-p)^{2}
\end{aligned}
$$

III IV
where
$\mathrm{I}=$ probability that all four transistors survive t hours of operation without failure.
II = pzobability that three of the four tran. sistors survive t hours of operation without faiiure while the other transistor fails.

III = probability that two of the four transistors survive while the other two transistors fail prior to time t in a favorable manner; i.e., failure of the two transistors does not cause configuration failure. This probability represents the sum of:

1. $\quad 4 a^{2}(1-a)^{2}\left(1-p i^{2}\right.$, the probability that two transistors short prior to time t (however, both failures are not in the same leg of the Quad): and
2. $\quad 12 a^{2} p(1-p)(1-a)^{2}$, the prob. ability that two transistors fail prior to time t where one is a short and the other an open.

E is usuaily an open or a short

FIGURE 10.7. Reliability Block Diagram of a Diode and Transistor Quad Bridge Network'

IV = probability that three transistors fail prior to time t : two of the transistors short and the other opens (however. the two shorts are not in the same leg of the Quad).
In general, for a network of identical elements in m paths, where success is neither an open nor short network.

$$
R=\left[1-q_{3}^{n}\right]^{m}-\left[1-\left(1-q_{0}\right)^{n}\right]^{m}
$$

where

$$
\begin{aligned}
q_{s} & =\begin{array}{l}
\text { probability of failing short, for an ele- } \\
\text { ment }
\end{array} \\
q_{0} & =\begin{array}{l}
\text { probability of failing open, for an ele- } \\
\text { ment. }
\end{array}
\end{aligned}
$$

The reliability equation for the bridge network is a function of whether or not the ele-
ments are polarized. Polarized elements allow current to flow in one direction only.

For identical nonpolarized elements which allow current to flow in either direction (Ref. 2)

$$
\begin{align*}
& \quad R=\left(1-q_{0}-q_{s}\right)\left[q_{0}^{4}-2 q_{0}^{2}+\left(1-q_{s}^{2}\right)^{2}\right] \\
& \left.+q_{5},\left(1-q_{s}\right)-\left\{1-\left(1-q_{0}\right)^{2}\right]^{2}\right\} \\
& + \tag{10-16}\\
& q_{s}\left\{\left(1-q_{0}\right)^{2}-\left[1-\left(1-q_{s}\right)^{2}\right]^{2}\right\} \cdot(10-16
\end{align*}
$$

For identical polarized eiements which allow current to flow in one direction only,

$$
\begin{align*}
& \quad R=\left(1-q_{0}-q_{s}\right)\left[2 q_{0}^{3}-3 q_{0}^{2}+\left(1-q_{s}^{2}\right)^{2}\right] \\
& +q_{o}\left\{\left(1-q_{s}\right)^{2}-\left[1-\left(1-q_{o}\right)^{2}\right]^{2}\right\} \\
& +q_{s}\left\{\left(1-q_{o}\right)^{2}-\left[1-\left(1-q_{s}\right)^{2}\right]^{2}\right\} \tag{10-17}
\end{align*}
$$

Although conditional reliability increases as a result of using a quad, several important design factors must be considered, namely:

1. Using transistors in a Quad configuration subjects them to more vigorous and demanding parameter requirements.
2. The redundant configuration can drive but one fourth the load of the nonredundant circuit.
3. The Quadding approach is inherently a slower one, increasing signal propagation time by at least 2:1.
4. The redundant design will dissipate up to, and possibly more than, four times the power of a single transistor, if maximum speed is desired.
5. The Quadding layout usually will demand a greater supply voltage and, therefore. cause the minimum power ratio to be about $2: 1$, redundant to nonredundant.
6. Failure of any unit of a Quad can increase semiconductor heat dissipation per unit up to four times. A direct consequence of this is requiring the lowering of ambient operating temperature to keep semiconductor junction temperatures below the danger point.

10.2.5 SUMMARY TABLE

Table 10-1 summarizes the important characteristics of component redundancy for different combinations of short to open fail-
ure when the elements are susceptible to both. The failure conditions, reliability equation, approximate probability of failure, and impedance variation due to redundancy are presented.

10.3 DECISION-WITHOUT-SWITCHING REDUNDANEY

10-3.1 MAJORITY LOGIC REDUNDAN゙CY

Majority logic is a form of decision redundancy for which the correct output is assumed to be the one found in a majority of the channels. The concept of majority logic was first proposed by von Neumann and has since been enlarged upon by many authors. Von Neumann's original concept required extremely high redundancy to achieve high reliabilities, but later techniques give high reliability with a rather low degree of redundancy. Typical structures are shown in Figs. 1.0-8 and 10-9.

The probability of success for the majority group is, from Eq. 8-17,

$$
\begin{equation*}
p_{n}=p_{i} \sum_{i=n}^{2 n+1}\left({ }_{i}^{2 n+1}\right) p^{i} q^{2 n+1-i}(\tag{10-18}
\end{equation*}
$$

where
$p=$ probability that a circuit is operating properly
$q=(1-p)=$ probability that the circuit has failed
$p_{v}=$ probability of success of Majority Vote Taker MV'T
$2 n+1=$ number of units.

FIGURE 108. Basic Majority Vote Redundant Circuit ${ }^{1}$

TABLE 10-1. CONPONENT REDUNDANCY ${ }^{1}$

FIGURE 10-9. Majority Vote Redundant Circuit With Multiple Majority Vote Taker'

The lower degrees of redundancy give the approximat, failure probabilities listed in Table 10-2.

TABLE 10-2

APPROXIMATE FAILURE PROBABILITIES FOR MANORITY LOGIC REDUNDANCY'

$2 n+1$ (Degree of Redundancy)	Approximate Failure Probrbility of Circuit
3	$a_{v}+3 q^{2}-2 q^{3}$
5	$a_{v}+10 q^{3}-15 q^{4}+6 q^{5}$
7	$q_{v}+35 q^{4}-84 q^{5}+\cdots$
9	$q_{v}+126 q^{5}-420 q^{6}+\cdots$

Using higher degrees of redundancy will not substantially improve overall reliability, since the majority vote laker (MVT) reliability soon becomes the limiting factor. Even for threefold redundancy $(2 n+1=3), q_{r}$ is the major caus: of failure if q is reasonably small.

When majority lonic is applied to each block, and every MVT is triplicated except the last one, the resultant failure prothability for the general case, using: a $(2 n+1)-$ fold majority logic and m blocks, is as follows:

$$
\begin{align*}
& 1-R=\left(1-q_{f v}\right) \\
& \times\left[1-\sum_{i=n+1}^{2 n+1}\binom{2 n+1}{i} q_{b}^{i} p_{b}^{2 n+1-i}\right] \\
& \times\left[1-\sum_{i=n+1}^{2 n+1}\binom{2 n+1}{i}\left(q_{b}+q_{v}-q_{b} q_{v}\right)^{i}\right. \\
& \left.\left(1-q_{b}-q_{t}+q_{b} q_{v}\right)^{2 n+1-i}\right]=1 \tag{10-19}
\end{align*}
$$

where the notation is shown on Fig. 10-10.
Assuming that all the failure probabilition are reasonably small, this becomes

$$
\begin{align*}
1-R & \approx q_{f v}+\binom{2 n+1}{n+1}(q / m)^{n+1} \\
& +(m-1)\binom{2 n+1}{n+1}\left(q_{v}+q / m\right)^{n+1} \tag{10-20}
\end{align*}
$$

where 9 is the probability of failure for the nonredundant system.

For threefold majority logic ($n=1$), the probability is

$$
\begin{equation*}
1-R \approx q_{/ r}+3(q / m)^{2}+3(m-1)\left(q_{r}+q / m\right)^{2} \tag{10-21}
\end{equation*}
$$

The MVT is considered ideal if $\lambda_{0} m_{o} t \ll 1$ where λ_{r} is the failure rate of the MVT and t is the mission time. If the MVT is ideal, rather than infallible, and if the number of MVT failures in a given length of time obeys the Poisson distribution, thea

$$
\begin{equation*}
p_{r}(t)=e^{-\lambda_{r} t} \tag{10-22}
\end{equation*}
$$

where P_{s} is the probability that a vote taker is working properly.
It is assumed that the output of a nonfunctioning vote taker is the complement of the correct output.

If the failure rate of the MVT's is too large to be neglected, redundan: MVT's can te used. In this case, the failure rate of ant individual curcuit can tre considered to include the circuit and the vote taker feeding that
circuit. The overall system then becomes equivalent to a system using nonredundant ideal MVT's. If the probability of survival for an individual circuit is

$$
\begin{equation*}
p=p_{1} p_{0}=\left(e^{-\lambda_{1} t}\right)\left(e^{-\lambda_{1}, t}\right)=c^{\left.-i \lambda_{r}+\lambda_{0}\right) t} ; \tag{10-23}
\end{equation*}
$$

then

$$
\begin{equation*}
R=\left[\sum_{i=0}^{n}\binom{2 n+i}{i} q^{i} p^{2 n+1-i}\right], \tag{10-24}
\end{equation*}
$$

which is equivalent to the probability of success for m majority groups.

It can be shown that the maximum reliability is achieved with nonideal vote takers if (Ref. 5)

$$
\begin{equation*}
\lambda_{6} \lambda_{v}=1 /(2 n+1) \tag{10.25}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{0}=\text { failure rate of the circuit } \\
& \lambda_{v}=\text { failure rate of the vote taker }
\end{aligned}
$$

$(2 n+1)=$ number of identical circuits.

It is usually necessary to carry system output on a single line, in which case the redundancy scheme proposed $t ;$ Moore and Shannon could be :used to improve the reliability of system output, thus eliminating the final vote taker from the analytic expression. This form of redundincy is usually associated with
binary inputs and ouifuts. It can be applied in situations that call for either intermittent or continuous operation in time. Some conclusions which can be drawn from all this are:

1. Assuming ideal vote takers, a digital system will be most reliable if majority logic is applied at as low a level as poasible, i.e., when the system is divided into as many digital subsystems, each followed by a majority vote taker, as poasible.
2. On the otiver hand, it is clear that the MTF for the system will always be less than the MTF for the individual circuit. In the limit as $n \rightarrow \infty$, the system MTF can be 0.69 times the MTF for the individual circuit.
3. The use of redundancy and majority logic gives the greatest improvement in reliability in the case of large systems. i.e.., in systems for which it is poosible to ash:eve large values of m.
4. The full reliability improvement can be realized orly if all circuits are working properly at time $t=0$. This causes a checkout and repair problem.
5. Unless the nonredundant fault probability q is small, very high degrees of redundancy are required to reduce system failure probability. For $q>0.5$, any degree of majority logic retundancy will actually c'-grade reliability, although $q>0.5$ is not very realistic for anything but deep-space probes.
6. If nonredundant MVT's of limited reliability are used anywhere in a redundant

system, they will conetitute for some period of time the most likely source of syst m fairure.

1032 MULTIPLE LINE REDUNDANCY

Multiple line modundancy has been studied extenaively by We stinghouse and is one of the most efficient types of circuit redundancy (Refis. 6 and 7). It is applied by replacing the single circuit of a nonredundant network by nonidentical circuits operating in parallel, where m is called the order of the redundancy.

The reliability improvement achieved by these redurdant circuits depends on the ability of the network to experience circuit failures without degraciation of the network operation. The use of restorers within the networt provides this characteristic. The restorer consists of m restoring circuits which, when operating correctly, can deaive the correct output from \boldsymbol{k} of \boldsymbol{m} correct inputs. A typical circuit is shown in Fig. 10-11.

A reliability model can be developed based on the following assumptions:

1. The circuits in the network are s-independent.
2. Only an approximation to the exact reliability will be given, and it is based on techniques described in Refs. 8 and 9. The approximation is good if the reliabilities of the circuits in the network are close enough to one.
3. The approximation is based on the concepts of minimal cuts, discussed previously , and coherent systems. A system is coherent if it meets the following four conditions:
a. If a group of circuits in the system is failed, causing the system to fail, the occurrence of any additional failure or failures will not return the system tc a successful condition.
h. If a group of circlits in the system is successful and the system is successful, the system will not fail in some of the failed components are returned to the successful condition.
c. When all the circuits in the system are successful, the system is successful.

FIGURE 10.11. Order-throe Multipte Line Rackndent Network'
d. When all the circuits in the system fail, the system fails. The system shown in Fig. $\mathbf{1 0 - 1 2}$ is an example of a coherent system.

The lower bound to system reliability is the robability that none of the system minmal cuts fail: for the sample in Fig. 10-12, it is
$R_{s} \approx\left(1-Q_{1} Q_{2}\right)\left(1-Q_{4} Q_{5}\right)\left(1-Q_{2} Q_{3} Q_{4}\right)$
(10-27)
where
$R_{s}=$ system reliability
$Q_{i}=$ the probability of failure for circuit i.
This equation is approximate because the failures of minimal cuts are assumed to be s-independent which is generally not true, since one component may appear in several minimal cuts.

If minimal cut j is denoted by sei S, then II Q_{i} is the probability of fuilure for minimal $\because S_{j}$

FIGURE 10-12. A Coherent System'
cut j. The lower bound of the system reliability is

where
$c=$ number of minimal cut sets
$\epsilon=$ "is a member of".
Thus, the determination of the lower bound on reliability requires that the minimal cuts of the network be identified. In a multiple line network with restorers, a cut is any group of circuits whose failure causes the outputs of at least one restored function to have ($m-k+$ 1) or more failed lines. This would constitute a retwork failure.

The minimal cuts of a multiple line redundant network have three chiracteristics that are sufficient to establish their identity:

1. All the members of the minimal cut are circuits in a restored function or restorers that are the input sources of that restorid function.
2. The failure of each member of the minimal cut will cause one output line of the restored function to be in error, and each member will be in a different position.
3. The failure of a minimal cut will cause exactly ($m-k+1$) -output lines of the restored function to be in error; hence, a minimal cut will have ($m-k+1$)-members.

If all the sets of circuits that fulfill these characteristics are listed for each of the restored functions in the network, all of the minimal cuts of the network and the lower bound for the network reliability can be found.

The improvement in system reliability is comparable to the improvement in the reliability of a circuit when a particular element is made redundant. The improvement will not be of the same magnitude, because of the addition of restorers in the multiple line network.

Multiple line redundancy results in im. proved reliability of the system unless the individual circuit reliabilities are very low. Low circuit reliabilities cause the restorers to choose the wrong value if k of the m circuits have failed.

The tower limit approximation given for the multiple line network is not good if the circuit reliabilities are not close enough to one. If the order of the redundancy exceeds three, the determination of the it:put sources becomes quite difficult. Bootean techniques can be used for determining the input sources of a function.

10.3.3 GATE-COMNECTOR REDUN. DAMCY

Gate-connector, or gate-connected, redundancy is a combination of several binary circuits connected in parallel along with a circuit of switch-like gates which serves as the connecting majority organ (Refs. 1 and 10). The gates contain no components whose failure would cause the redundant circuit to fail, and any component failures in the gate connector act as though the binary circuits were at fault.

Gateconnector redundancy applied to four units in parallel and a 4 -element network for the gate connecior is shown in Fig. 10-13.

FIGURE 10.13. Circuit Illustrating Gateconnector Redundency ${ }^{1}$

For this circuit, the following assumptions and nomenclature are used.

1. $f=$ probability of failure for each binary unit
2. g = probability of failure for each gate
3. Failures are s-independent
4. If the circuit is closed when it should be open, it is a Type I failure
5. If the circuit is open when it should be close" it is a Type II failure.

ance 70c-187

There is an optinum value of M. In the region of g and R_{g}, where reliability improvement is obtained, the maximum value of M should be used. In practice, it is difficult to use single active element circuits as s-independent circuits. A reasonable s-independent block in a systein wouki consist of two active elements. Such circuits would include nipflops, clock gen-rators, two-way logic circuits. and so fcrii.

If a machine consists of K active element circuits, $M=K / 2$. A gate is assumed to be equivalent to one active element circuit. When this is substituted into the preceding equation, the res ilt is

$$
\begin{equation*}
P_{R}=\left[2 R_{0}{ }^{\frac{6}{K}}-R_{o}^{\frac{12}{K}}\right]^{\kappa} \tag{10-37}
\end{equation*}
$$

Since the gate-connector redundancy can be applied at a low component organization level, it is suitable for use in conjunction with the Moore-Shannon redundancy.

Critical comporents that require better than ± 50 percent component-value tolerances can be made redundant by the gate-connector redundancy in a machine that is made redundant by Moore-Shannon redundancy.

A factor which should not be overlooked when designing with gate-connector redundancy is that the switrib-like gate connector must contain no components whose failure would cause the redundant circuit to fail.

103.4 CODING REDUNDANCY

Coding redundancy is a method of incorporating pessive self-repair in order to im prove reliability (Refs. 1 and 11). It is used for processing unreliable information in logical netivorks such as computers. Binary signals that are to be used is inputs can be checked using coding redundancy.

Under certain restrictions, the type of coding redundancy proposed by Tooley (Ref. 11) avoids the usual complexity requirements for redundancy.

A model for an AND gate is shown in Fig. 10-15 in two equivalent forms with noise, denoted by $P(0 \mid 1)$ and $P(1 \mid 0)$, added. The restrictions assumed in the model by Tooley are:

1. The errors for each of the logical devices must be s-independent.
2. The logical function of a device cannot be changed by some condition in one of its inputs.

The method for increasing the reliability of combinational logic networks can be summarized as follows. A given network designeci to compute a function $F\left(x^{m}\right)$ is replaced by one that is designed to compute a new function $H\left(x^{\text {e }}\right) . H\left(x^{\mathrm{c}}\right)$ is defined as that function which is equivalent to successive applications of a decoding function $d\left(x^{\mathrm{C}}\right)$, a desired com-

putation $\boldsymbol{F}\left(x^{m}\right)$, and an encoding function e such that

$$
\begin{equation*}
H\left(x^{2}\right)=e\left\{F\left[d\left(x^{2}\right)\right]\right\} \tag{10-38}
\end{equation*}
$$

where

$$
\begin{align*}
& H\left(x^{\ell}\right)=\left\{H_{1}\left(x^{\ell}\right), H_{2}\left(x^{\ell}\right), \ldots, H_{n}\left(x^{\ell}\right)\right\} \\
& c\left\{F\left[d\left(x^{\ell}\right)\right]\right\}=\left\{e_{1}\left\{F\left[d\left(x^{\ell}\right)\right]\right\}\right. \text {, } \\
& \left.e_{2}\left\{F\left[d\left(x^{\ell}\right)\right]\right\}, \ldots, e_{n}\left\{F\left[d\left(x^{\ell}\right)\right]\right\}\right] \\
& e_{i}\left\{F\left[d\left(x^{\ell}\right)\right]\right\}=e_{i}\left\{F_{1}\left[d\left(x^{\ell}\right)\right],\right. \\
& \left.F_{2}\left[d\left(x^{\mathrm{e}}\right)\right], \ldots, \boldsymbol{F}_{\mathrm{m}}\left[d\left(x^{\mathrm{e}}\right)\right]\right\} \\
& F_{i}\left[d\left(x^{\ell}\right)\right]=F_{i}\left[d_{1}\left(x^{\ell}\right), d_{2}\left(x^{\ell}\right), \ldots, d_{m}\left(x^{\ell}\right)\right] \\
& d_{1}\left(x^{\ell}\right)=d_{1}\left(x_{1}^{\ell}, x_{2}^{\ell}, \ldots, x_{\xi}^{\ell}\right) . \tag{10-39}
\end{align*}
$$

Here, $d\left(x^{\mathrm{l}}\right)$ is the decoding function corresponding to some error-correcting code that is scoumed to have been used on the output of the preceding network, and e is the encoding function corresponding to some code which, of course, also must be accommodated on the input of the following network. The net result is to replace one network by another where the two networks are related through two error-correcting codes, such that, in the absence of errors, a given input and output state of the second is the encoded form of the corresponding input and output states of the first.

The performance of devices using coding redundancy can improve the correctness of output signals and also the engineering confidence of the individuals using the equipment. If the decoding function becomes complex, the usefulness of coding redundancy is minimized, and this appears to be the major drawback of coding redundancy.

To estinate reliability improvement, consider first a system model that will be used to estimate a system error probability. In this model, a system consists of N combinatorial networks arranged in an arbitrary order (any combination of series and parallel). Network j has n_{j} outputs being generaied by devices having a fan-in of ℓ_{j}, each of which has an error probability of $p\left(\ell_{j}\right)$. Let α_{j} be defined as the probability that more than t_{j} of the n_{j} outputs are in erroi, where t_{j}, is the maximum number of errors that can be corrected by the code used in the output of network j. Assume that a system error is obiained if one or more networks generate an output having more
than t, errors, then P, the probebility of a system error, can be calculated as

$$
\begin{equation*}
P=1-\prod_{i=1}^{N}\left(1-\alpha_{i}\right) \tag{10-40}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{i}=\sum_{i=i_{j}+1}^{n_{j}}\left(n_{j}^{n}\right) p^{j}\left(\ell_{j}\right)\left[1-p^{j}\left(\ell_{j}\right)\right]^{n_{j}-i} \\
& \approx\left(l_{j}^{n_{j}}+1\right) p^{d_{j}+1}\left(\ell_{j}\right) \\
& n_{j} p\left(\ell_{j}\right)<1 . \tag{10-41}
\end{align*}
$$

Let a meacure of improvement I, the improvement factor, be defined as the ratio of the system error probability before and after coding,

$$
\begin{equation*}
I=p_{B} / p_{A} \tag{10-42}
\end{equation*}
$$

where
B, A are subscripts refer:ing to Before and After coding, respectively.
If, fur simplicity, it is assumed that the system is sufficiently homogeneous that all the networks have the same number of inputs and outputs, and the same error-correction capacity $\left(n_{i}=n_{j}, \ell_{i}=\ell_{j}\right.$, and $t_{i}=t_{j}$, for all i and $\left.j\right)$, then

$$
\begin{equation*}
\alpha_{i}=\alpha_{j}=\alpha \tag{10-43}
\end{equation*}
$$

for all i, j, and

$$
\begin{equation*}
p=1-(1-\alpha)^{N} \approx N \alpha \tag{10-44}
\end{equation*}
$$

$N \alpha<1$.
Thus,

$$
\begin{equation*}
I \approx \alpha_{B} / \alpha_{A} \tag{10-45}
\end{equation*}
$$

A detailed explanation of the practical problems associated with this type of design is presented in Ref. 12.

10- DECISION-WITHSWITCHING REDUNDANCY

104.1 STANDBY REDUNDANCY

A system in which a component or unit is stanciing by idly (cold standby) and operates only when the preceding unit fails is said to be using standby or sequential redundancy (Refs. 1 and 13). A standby system usually requires failure-sensing and/or switching net-

FIGUAE 10.16. Systom Illustrating Stanoloy Roumaimey"
works or devices to put the next unit into operation.

Fig. 10-16 shows two elements where A is operating and B is in standby redundancy, writing until A faiis, and S is the sensing and switching mechanism. The device operates in the following four mutually exclusive ways:

1. S is operating properly. It monitors A, and if A fails. it tums B on, and the device operates until D^{2} faiis (Case 1).
2. S tails by not going sble to sense and /or switch, and when it fails, A is operative and the device siols when A fails (Cave 2).
3. S fails and in jailing it switches to 3. A is still oparating when S fatz, but the derice fails when B fails (Case 3).
4. A is operating and S fails. The signal path through S becomes oper or short and the entire device fails at the time S fails (Case 4).

The notation for Egs. 10.46 through 10-49 follows:
$\phi_{\alpha}=$ failute posf for $\alpha, \alpha=A, B, S$
$\Phi_{\alpha}=1$ fiume Caf sor $\alpha, \alpha=A, B S$
$\bar{\Phi}_{\alpha}^{\alpha}=1-{ }_{\alpha}$
$q_{1}=$ probability that S fails and the switch stays on A
$G_{2}=$ probubility that S fails and the switch goes to B
$q_{3}=$ probability that S fails in such a way that the signal peth is shorted or open

$$
q_{1}+q_{2}+q_{3}=1
$$

For Cae 1:

$$
\begin{equation*}
\theta_{1}(t)=\int_{t_{2}=0}^{t} \int_{t_{1}=0}^{t_{2}-t_{2}} \bar{\phi}_{2}\left(t_{2}\right) \phi_{A}\left(t_{2}\right) \phi_{B}\left(t_{2}\right) d t_{1} d t_{2} \tag{10.46}
\end{equation*}
$$

For Case 2:

$$
\begin{equation*}
G_{2}(t)=\dot{q}_{1} \int_{1=0}^{\prime \prime} \phi_{s}\left(t_{1}\right) \psi_{A}\left(t_{1}\right) d t_{1} \tag{10-47}
\end{equation*}
$$

For Case 3:

$$
\begin{array}{r}
Q_{8}(t)=q_{2} \int_{i_{2}=0}^{t} \phi_{E}\left(t_{2}\right) \int_{L_{1}=0}^{t_{2}} \\
\bar{\phi}_{A}\left(t_{1}\right) \phi_{3}\left(t_{1}\right) d t_{1} d t_{2} . \tag{1.0.48}
\end{array}
$$

For Case 4:

$$
\begin{equation*}
Q_{t}(t)=q_{3} \int_{t=0}^{t} \bar{\phi}_{A}\left(t_{1}\right) \phi_{3}\left(t_{1}\right) d t_{1} \tag{10-49}
\end{equation*}
$$

For the entire device

$$
\begin{equation*}
Q(t)=Q_{1}(t)+Q_{2}(t)+Q_{3}(t)+Q_{4}(t) . \tag{10-50}
\end{equation*}
$$

For the special case of the exponential failure law where λ_{s} is the failure rate of the switching mechanism, and $\lambda=\lambda_{A}=\lambda_{B}$ is the failure rate of the two syatersis A and B, standby redundancy is better than two systems in parallel if $\lambda>\lambda_{s}$. If $\lambda=\lambda_{s}$, the two types of redundancy are equal; and if $\lambda<\lambda_{s}$, parallel redundancy is sunerior.

The gain for a specified mission can be measured in terms of the ratio of the reliability of the structure with standby redundancy to the relisbility of altemate structures.

10-4.2 OPERATING REDUNDANCY

In operating redundancy, s-independent identical units operate simultaneously with a common input (Refs. 1 and 14). A failure detector is associated with each unit, and a

FIGURE 10.18. Failure Disgram of a Chain'
the switch constantly makes :i good connection to a chain that is functioning adequately. This can take place in m mutually exclusive ways, corresponding to the final connection to the m switch contact.

The possible modes of behavior of a chain are diagrammed in Figure 10-13. Successful operation through a given chain requires that the chain function adequately, R_{c}; that the failure detector not signal an error, $P\left(D_{b}\right)$; that the switch not step simultaneously while connected to this chain, $P\left(S_{b}\right)$; ard that the switch contact remain good, $P\left(S_{c}\right)$. The probability of successiful operation is

$$
\begin{equation*}
R_{1}=R_{c} P(D .) P\left(S_{b}\right) P\left(S_{c}\right) . \tag{10-51}
\end{equation*}
$$

The use of one value of $P\left(S_{b}\right)$ for the probability of no spontaneous stepping of the switch from any position is an approximation. A precise analysis would use $P\left(S_{b}\right)$ as previously defined only for the first chain with
successively larger values for this probability for chains $2, \ldots, m$. The final computed reliability is actually somewhat lower than the correct result. However, since the probability of spontaneous switching in all practical applications is very small, the more precise analysis does not appear to be warranted.

A stepping of the switch can occur in three ways (the symbols are for probabilities rather than for events):

1. The chain fails $\left(F_{c}=1-F_{c}\right)$; the detector signals failure, $P\left(D_{a}\right)$; and the switch steps, $P\left(S_{a}\right)$.
2. The chain does not fail, \boldsymbol{R}_{c}; bui the detector erroneously signals failure, $P\left(D_{b}\right)=1$ $-P\left(D_{b}\right) ;$ and the switch steps, $P\left(S_{a}\right)$.
3. The chain does not fail, $\boldsymbol{R}_{\boldsymbol{c}}$; the detector does not signal failure, $P\left(D_{b}\right)$; but the switch steps spontaneously, $P\left(S_{b}\right)=1$ $P\left(S_{b}\right)$.

AMCP 708-197

Thus, the probability of one stepping of the switch is

$$
\begin{align*}
\alpha & \equiv\left(F_{c}\right) P\left(D_{c}\right) P\left(S_{c}\right)+R_{c} P\left(D_{b}\right) P\left(S_{c}\right) \\
& +R_{c} P\left(\bar{S}_{b}\right) P\left(D_{b}\right) \tag{10.52}
\end{align*}
$$

There are several modes of behavior of one chain that lead immediately to system failure without any failure indication, due to a bad switch contact $P\left(\bar{S}_{e}\right)$, to failure of the switch to respond to an error signal $P\left(S_{a}\right)$, or to failure of the detector to indicate failure $P\left(D_{i q}\right)$. in addition, there are modes of behavior in which the detector and switch both make errors that cancel each other. These second-order effects will be axbitrarily ruled out.

The probability of successful operation with the final connection to switch-contact i is equal to the probability of $:-1)$-steppings of the switch times the probability of successful operation through one chain, or $\alpha^{(i-1)} R_{1}$.

Then, the reliability of the system is the sum of the probabilities for the m switch contacts:

$$
\begin{equation*}
R=\sum_{i=1}^{m} \alpha^{(i-1)} R_{1}=R_{1}\left(\frac{1-\alpha^{m}}{1-\alpha}\right) \tag{10-53}
\end{equation*}
$$

where

$$
\begin{align*}
& \quad R_{1}=R_{a} P\left(D_{b}\right) P\left(S_{b}\right) P\left(S_{c}\right) \\
& R_{c}=\prod_{i=1}^{n} R_{i} . \tag{10-54}
\end{align*}
$$

Because all $P(\cdot) \leqslant 1$,

$$
\begin{gather*}
R \leqslant P\left(S_{c}\right) \tag{10-55}\\
R \leqslant 1-\left(1-R_{c}\right)^{m} . \tag{10-56}
\end{gather*}
$$

In the present application, the device, with no redundancy, is considered to have a reliability \boldsymbol{R}_{0}. It is assumed that it is possible to break the device up into p groups of equal reliability, $R_{0}{ }^{1 / p}$. It is further assumed that the failure detector for the complete device consists of p units, each associated with a group, such that indications of failure originating from any of these units are equally probable. Then, if $P\left(D_{a}\right)$ and $P\left(D_{b}\right)$ are probabilities associated with the failure detector for one complete device, the corresponding
probabilities for the units asociated with a group will be $P\left(D_{c}\right)^{1 / p}$ and $P\left(D_{b}\right)^{1 / p}$. If each chain is made n times redundant, the system reliability, for perfect failure detection and switching, is

$$
\begin{equation*}
R_{s}=\left[1-\left(1-R_{0}^{1 / p}\right)^{n}\right]^{p} . \tag{10-57}
\end{equation*}
$$

The exact equations are complicated and are given in Refs. 1 and 14.

Operating redundancy is used in continunus time applications primarily, but it can be used in intermittent situations if the failuredetecting device is capable of signaling the switching mechanism at the proper time.

The performance of these systems in many instances will be limited by the reliability of the failure-detecting and switching assemblies.

Tables and charts given in Ref. 14 can be used in designing systems with operating redundancy: Given an estimate of the initial unreliability for a nonredundant system and the tolerable unreliability permitted in the final system, the degree of redundancy and the number of chains that will meet the specifications can be estimated from the appropriate curves in the reference.

For initially unreliable systems and a moderate degree of redundancy, high reliability can be achieved only by applying the redundancy to relatively smali units. Imperfect switching limits the reliability attainable in all cases such that the unreliability is not a steadiiy decreasing functiun of n, but has a definite minimum beyond which it increases.

10-4.3 DUPLEX REDUNDANCY

Duplex redundancy uses duplicated logic circuits operating in parailil (Refs. 1,13, and 15). It has an error detector at the output of each circuit which detects any noncoincident outputs and starts a diagnostic procedure. This procedure may last from a few microseconds to a few milliseconds, depending on the diagnostic process chosen in the design. Figure 10-19 illustrates the cluplex scheme.

If the exponential failure law is assumed, the reliability of the system when duplex redundancy and error detection is used is:

FIGURE 10-19. Illustration of Duplex Redundency ${ }^{1}$

$$
\begin{equation*}
R=e^{-T}\left(1+e^{-\alpha \tau}-e^{-(1+\alpha) \tau}\right) \tag{10-57}
\end{equation*}
$$

where
$\tau=\frac{1}{n} \times$ (failure rate of individual circuit)
$n=$ the number of circuits in siguence
$\alpha=\frac{\text { failure rate of error detector }}{\text { failure rate of individual circuits. }}$
Duplex redundancy can be used in digital computer logic circuits to protect against faulty outputs from basic logic elements. Duplex redundancy should improve digital system reliability. However, the system will not automatically correct internittent errors or two simultaneous failures.

Features of a duplex logic redundancy system are:

1. Basic logic circuitry is fully redundant.
2. All errors are detected and the faulty logic unit is disabled, thus correcting the error. Faulty logic units can be repaired without interrupting system operation. If both A_{1} and A_{2} fail at the same time, there is no error detection; however, this situation is very unlikely to occur.
3. The system is disabled only when both logic units fail.
4. The error detector is not in series with the output signals; hence, its failure does not affect the output.
5. Maintenance problems are simplified since the faulty logic unit can be identified automatically. Rapid identification of faults permits rapid replacement of failed units.

The main disadvantage of duplex redundancy is the need for a short diagnostic procedure in the event of failure. Also, in order to avoid losing eseential information, it may be necessary to record the contents of important registers and the input data. In this way, after an error is corrected, the original situation can be restored.

REFERENCES

1. Handbook for Systems Application of Redundancy, U S Naval Applied Science Laboratory, 30 August 1966.
2. J. J. Suran, "Use of Passive Redundancy in Electronic Systems", IRE Transactions on Military Electronics, Moore-Shannon Discussion, November 3, 1961.
3. W. E. Dickinson and R. M. Walker, " ${ }^{\text {Peli- }}$ ability Improvement by the Use of Multi-ple-Element Switching Circuits", IBM Journal, April 1958.
4. R. M. Fasano and A. G. Lemack, "A QUAD Configuration - Reliability and Design Aspects", Proceedings Eighth National Symposium on Reliability and Quality Control, 8, 394-407, January 1962.
5. J. K. Knox-Seith, A Redundancy Technique for Improving the Reliability of Digital Systems, Technical Report No. 4816-1, Stanford Electronics Laboratories.
6. P. A. Jensen, "The Reliability of Redundant Multiple-Line Networks", IEEE Transactions on Reliability, R-13 23-33 (March 1964).
7. M. K. Cosgrove, et al., The Synthesis of Redundant Multipie-Line Networks, AD-602 749, 1 May 1964.
8. J. D. Esary and F. Proschan, "The Reliability of Coherent Systems", Redundancy Techniques for Computing Systems, R. H. Wilcox and W. C. Mann, Eds., Spartan Books, Washington, D.C., 47-61 (1962).
9. J. D. Esary and F. Proschan, "Coherent Structures of Non-Identical Components", Technornetrics 5, 191-209 (May 1963).
10. R. Teoste, "Digital Circuit Reciundancy", IEEE Transactions on Reliability, R-13, 42.61 (June 1964).
11. J. Tooley, "Network Coding for Reliability", AIEE Transactions, Part 1, 407-14 (1962).
12. W. H. Pierce, Failure Tolerant Computer Design, Academic Press, New York and London, 1965.
13. L. A. Aroian, "The Reilisbility of Items in Sequence with Sensing and Switching", Redundancy Techniques for Computing Systems, R. H. Wilcox and W. C. Mann,

Eds., Spartan Books, Washingtori, D.C., 318-27 (1962).
14. B. J. Flehinger, "Reliability Improvement through Redundancy at Various System Levels', IBM Journal, 148-58 (Apti? 1958).
15. R. W. Lowrie, "High-Reliability Cor.1puters Using Duplex Reliability", Electronic Industries, August 1963.

CHAPTER 11 MONTE CARLO SIMULATIUN

11-0 LIST OF SYMBOLS

$$
\begin{aligned}
C d f & =\text { Cumulative distribution function } \\
p d f & =\text { probability density function } \\
s- & =\text { denotes statistical definition } \\
t & =\text { time for } r \text { failures } \\
\operatorname{Var}\} & =\text { Variance of } \\
\lambda_{i} & =\text { true failure rate for } i \\
\hat{\lambda}_{i} & =\text { estimated failure rate for } i, \text { a ran- } \\
& \text { dom variable } \\
\chi^{2} & =\text { chi-square, a special random vari- } \\
& \text { able }
\end{aligned}
$$

11-1 INTRODUCTION

In formal terms, Monte Carlo s' nulation (often just called simulation) is a method of mathematically simulating a physical experiment to cetermine some probabilistic property of a population of events by the use of random sampling applied to the components of the events; see Refs. 1-4 for more information. Less formally, simulation involves determining the probability distributions of the components of the system, and selecting a random sample from each component distribution. The resultant component sample values then are combined in a model to estimaie the system reliability measure. This process is repeated many times until enough data have been obtained to estimate the system probability distribution with the required precision. The measure can be s-reliability or mean time to failure, or it can be a performance parameter such as bandwidth, gain, noise, or power outpui.

Simulation can be applied at various phases of a program. For example, if actual performance or failure data are available on some of the components, the distribution of these values can be determined. Then by random sampling of these distributions and by combining the sample values into a model describing the system in terms of its components, the distribution of system performance can be derived. These methods also can be used as a prediction and analysis tool. For example, during the system conceptual phase,
a system model can be developed in terms of its components and, through use of various assumed component distributions, the perforraance of the system can be evaluated. Simulation also can be used as a comparative tool. Through simulation of various systems and their component distributions, the different types of systems can be compared, and an optimum approach can be selected with a high degree of assurance that, if the models used to describe the system are realistic, the selection truly will be optimum.

Simulation is based on several principles of probability and on the techniques of probability transformations. One of the underlying principles is the law of large numbers, which states that the larger the sample, the more certainly the sample mean will be a good estimate of the population mean. The centrallimit theorem gives a more precise statement of the law of large numbers (there are several theorems under this heading, all relating to the same topic--see Ref. 5 or Bibliography at end of Chapter 1): If a population has a finite variance σ^{2} and mean μ, then the distribution of the sample (size n) mean approaches the s-normal distribution with variance σ^{2} / n and mean μ as the sample size n increases.

An interesting thing about the centrallimit theorem is that nothing is implied about the form of the population distribution function. Whatever the distribution function, within reasonable limits, the sample mean will have approximately the s-normal distribution for large samples.

11-2 PROPERTIES OF DISTRIBUTIONS

Chapters 2 and 3 introduced the concept of probability density functions ($p d f$) for continuous random variables, the probability mass function ($p m f$) for discrete random variables, and the cumulative distribution function (Cdf) for any random variable. Textbooks, such as Ref. 5 and the Bibliography at the end of Chapter 1, give an adequate introduction to probability theory.

The s-expectaction of the average of N s-independent trials of a function of $g\left(x_{j}\right)$ is
the expectation of $\Omega(x)$, where X is a random variable.

A generalization of the law of large numbers comes into play during the repeated Monte Carlo trials:

$$
\begin{align*}
& \lim _{N \rightarrow \infty}\left\{\operatorname { P r } \left\{1 \int_{-\infty}^{\infty} g(x) f(x) d x\right.\right. \\
& \left.\left.\left.-\frac{1}{N} \sum_{1}^{N} g\left(x_{j}\right) \right\rvert\,>\epsilon\right\}\right\}=0 \tag{11-1}
\end{align*}
$$

where

$$
\begin{aligned}
\epsilon & =\text { any positive number } \\
f(x) & =p d f \text { of } x \\
\boldsymbol{g}(x) & =\text { any function of } x ; \text { usually, the } \\
& \text { one being simulated } \\
N & =\text { sample size } \\
x_{j} & =\text { sample value of } X
\end{aligned}
$$

Eq. 11-1 shows that the chance of departure from the true value of $g(x)$, weighted according to the frequencies of the x 's, becomes less as N increases.

The reasoning can be extended to a function of many variables.

11-3 THE SIMULATION METHOD

The simulation method is a way to determine the distribution of a function of one or more variables from the distributions of the individual variables. The method involves random sampling from the distributions of all variables and inserting the values so obtained in the equation for the function of interest. Suppose the function whose distribution is to be estimated is $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and that the $X_{1}, X_{2}, \ldots, X_{n}$ are s-independent random variables whose distributions are presumed to be known. The procedure is to pick a set of x 's randomly from the distributions of the X 's, calculate g for that set, and store that value of g. The procedure is repeated many times until enough values of g are obtained. From this sample of g values, its distribution and parameters can be estimated. Very often, one settles for estimating the mean and standard devia:ion of g.

Simulation is a well developed art/science. It is virtually always done on a computer because a tremendous number of calculations
are involved. Special simulation lancurees have been developed. Check with your computer installation to find out what simulation facilities are available, and what programming ascistance that installation can offer.

11.4 MEASURES OF UNCERTAINTY

Several methods are available for establishing s-confidence intervals and estimating uncertainties in the results of a simulation. They are essentially the same as in any sampling technique. Chapter 4 reviews some of the statistical concepts and gives references for further reading. The procedures are all quite standard and well-known (to mathematicians).

The required sample size for a given minimum uncertainty is a handy number to have. It is useful for getting an idea of hov much computer time is likely to be involved. For simulations of equipments, the programming and analytic effort to get ready to simulate will far outweigh the cost of actually running tes simulations. Table $11-1$ shows typical sample sizes for various s-confidence levels and gcodness-of-fit (to the $C d f$).

TABLE 11-1
MINIMUM SAMPLE SIZE REQUIRED FOR MONTE CARLO SIMULATION ${ }^{6}$

δ	$y=0.90$	$y=0.95$	$y=0.99$
0.03	6800	9600	16500
0.02	1700	2400	4125
0.03	750	1066	1833
0.05	272	384	660

$\delta=$ maximum deviation of semple Cdf from srue Cdf $\gamma=s$-confidence level
This rable is derived from the Kolmogorov-Smirnov test of goodness-of-fit. It doss not depend on the form of the distribution.

Since theory shows that the Monte Carlo technique gives a true random sample of the population (function) to be estimated, there is no need to go into special discussions about the statistical theory.

All random distributions used for digital computers are peeudo-random. Since a pattern is used to generate the peudo-random numbers, modest attention ought to he devoted to being assured that the numbers will behave well enough for your pasticular simulation. Rarely in reliability work will difficulties from this source arise, but it can happen.

11.5 APPLICATIONS

In principle, the demonstration of the reliability of a system is a fairly straightforward procedure. Take several systems, operate them for a sufficient. length of time, record the number of failures which occur, and evaluate the results by one of a number of available statistical techniques. Unfortunately, this is not practical - particularly for dealing with complex, costly systems. Even an optimum mix of time, available systems, manpower, and test facilities is often economically prohibitive.

Because of the complexity of many systems, extensive tests at the system level often are limited because of time, facilities, cost, and schedules. Instead, extensive testing generally is done at the subsystem level. This permits testing to be conducted earier in a program, and reveals potential difficulties at the earliest possible time. Two management and
statistical difficulties arise if the test results are to be used to assess the reliability potential of the system. Such tests may be part of the design-development program, and the reliability data obtained may be a byproduct rather than the end result of the test. Therefore, there is no longer a controlled condition in the statistical sense, and the analyst is forced to work with the information that becomes available.

The synthesis of system reliability from the results of subsystem tests is not a simple problem. As a rule, each subsystem type will be run a different number of total operating hours, and different numbers of failures will be observed.

To illustrate the second point, consider a simple series (1-out-of S:F) system consisting of 3 s-Independent subsystems, with the operating times and observed failures indicated in Table 11-2.

The subsystems have constent failure rates. The failure rate of the system is just the sum of the subsystem failure rates, and we could try the same formula using the estimated failure rates from Table 11-2, viz. $\hat{\lambda}_{3}=(0.40+0.25+0.20)$ per $1000 \mathrm{hr}=$ 0.85 per $1000 \mathrm{hr} ; \hat{\lambda}$ is an estimate of the failure rate λ. We have an estimate of λ_{8}; bui, (as mentioned in Chapter 4 "Review of Statistical Theory") the trick is, not to get an estimate

TABLE 11.2

SUMmARY OF SUBSYSTEM OPERATIAG TIMES, FAILURES, FAILURE-RATE ESTIMATES AND : CONFIDENCE INTERVALS FOR FAILURE RATES

Subaytans	Totel operating\qquad	Text stopped efter r failures	$\begin{gathered} \hat{\lambda}_{i}=r / t_{0} \\ \operatorname{per} 1000 \mathrm{ir} \end{gathered}$	s-Confidence interval for λ_{1}	
				lower 5\%	upper 5\%
1	5000	2	0.40	0.071	0.95
2	8000	2	0.25	0.044	0.59
3.	10000	2	0.20	0.036	0.47
System	...	-	0.85	?	?

$\hat{\lambda}_{1}$ is an astimate of the true failure rate λ_{1}.
The a-confisence intervals were obtained from a table of the chi-square distribution; $2 \lambda_{t}$ has a chi-square distribution with $2 r$ degrees of freedom. From tables such as those in Part Six, Mathematical Appendix and Giossany fer 4 degrews of freedom, the lower 5% point is $X^{2}=0.711$ and the upper 5% point is $X^{2}=9.49$.
\therefore bound $=\chi^{2} /(2 t)$.
(anyone can do that), but to know its statistical properties. Unfortur?:sly, the statistical properties of the estimate ve just used are not known. The statistical properties of estimates of system reliability from a knowledge of subsysterin sample data is an unsolved problin (except for a few special cases).

For each subsystem, it is known that $2 \lambda t$ has a chi-square distribution with γ degrees of freedom; $\gamma=2 r$ if the test is stopped after r failures, and $\gamma=2(r+1)$ if the test is stopped after a fixed time $t ; \lambda$ is the true failure rate.

We will solve our particular problem by Monte Carlo simulation. The equation for $\hat{\lambda}_{s}$, whose distribution we want to estimate is

$$
\begin{equation*}
\hat{\lambda}_{s}=\hat{\lambda}_{1}+\hat{\lambda}_{2}+\hat{\lambda}_{3} \tag{11-2}
\end{equation*}
$$

In each subsystem, the procedure is to run until 2 failures occur. We cannot simulate unless we know the distributions from which the $\hat{\lambda}_{1}$ come. So we cannot solve the problem in Table 11-2 by a short simulation; we can, however, solve a similar one, as given in Table 11-3. We have to know all the parameters in a problem in order to solve it by Monte Carlo simulation. It is neither correct nor meaning. ful to use the random times in Table 11-2 to find a "discribution for λ "; in classical statistics, $\bar{\lambda}$ does not have a distribution, it is fixed. See Ref. 7 for an advanced discussion of s-confidence.

One of the big difficulties with Monte Carlo simulation is that it is so restricted. Like other numerical techniques, it does not answer general questions; it only treats the specific numbers used in it.

Let χ_{4}^{2} be a random value from a chisquare distribution with 4 degrees of freedom.

TABLE 11.3

SYSTEM FAILURE BEHAVIOR		
Subsystem	True failure rate λ_{i}, per 1000 hr	Test stopped after r failures, \qquad
1	0.80	2
2	0.50	2
3	0.10	2
System	1.40	.

Then, for this example

$$
\begin{align*}
\hat{\lambda}_{i}= & r_{i} / t_{i}=2 / t_{i} \\
& \left(\text { defines } \hat{\lambda}_{i}\right) \tag{11-3}\\
2 \lambda_{i} t_{i}= & n_{2 r}^{2}=\chi_{4}^{2} \\
& \left(2 \lambda_{t} \text { has a } \chi_{2 r}^{2}\right. \text { distribution) } \tag{11.4}\\
\hat{\lambda}_{i}= & 4 \lambda_{i} / \chi_{i}^{2} \tag{11-5}
\end{align*}
$$

Eq. 11.5 is used to calculate $\hat{\lambda}_{1}$ from a randomly generated value of chissquare (with 4 degrees of freedom). Table 11-4 is a collection of pseudo-random numbers from the chi-

TABLE 11.4

RANDOM NUMBERS FROM THE CHISOUARE
 DISTRIBUTION WITH 4 DEGREES OF FREEDOM

No. 1	No. 2	No. 3
11.73	4.959	6.134
0.6107	3.858	4.721
2.628	1.56E	7.891
6.040	6.393	3.485
2.106	2.590	1.867
4.994	4.870	3.040
2.135	14.47	4.920
2.977	3.897	4.376
3.172	7.499	1.331
9.594	1.331	2.262
5.751	3.487	3.083
0.1846	0.5026	2.660
9.423	6.447	2.254
4.967	0.3100	2.194
6.093	3.182	5.509
5.074	7.010	5.559
4.347	9.706	1.177
1.094	1.498	3.107
3.696	8.131	4.455
0.3131	7.743	2.267
0.4130	4.379	4.907
3.559	7.291	1.333
2.523	1.311	6.511
6.946	10.32	4.688
1.571	3.098	0.9772
18.71	1.456	3.709
13.02	2.405	5.368
7.036	9.338	4.619
2.787	1.767	7.469
6.049	3.203	2.261

TABLE 11.6

MONTE CARLO ANALYSIS OF EXAMPLE SYSTEAM

		\qquad		Subystom $\hat{N}_{0} .2$ n. λ_{2}		Subovstim No. 3 n $\hat{\lambda}_{3}$		$\begin{array}{r}\text { System } \\ \hat{\lambda} \\ \hline\end{array}$	
		3	0.273	12	1.403	4	0.063	1	0.739
		27	5.240	16	1.518	10	0.085	26	5.843
		21	1.218	24	1.277	1	0.051	22	2.546
		10	0.530	11	0.313	16	0.115	5	0.967
		24	1.519	21	0.772	26	0.214	21	2.506
		13	0.641	13	0.111	19	0.132	8	1.183
		23	1.499	1	0.138	8	0.081	18	1.718
		19	1.075	15	0.513	14	0.091	17	1.680
		18	1.009	7	0.267	28	0.301	15	1.576
		4	0.334	27	1.503	22	0.177	19	2.013
		11	0.556	17	0.574	18	0.130	11	1.260
		30	17.335	29	3.579	20	0.150	30	21.464
		5	0.340	10	0.310	23	0.177	4	0.827
		14	0.644	30	6.451	25	0.182	27	7.278
		8	0.525	19	0.629	6	0.073	10	1.226
		12	0.631	9	0.285	5	0.072	6	0.988
		15	0.736	3	0.206	29	0.340	12	1.282
		26	2.925	25	1.335	17	0.129	25	4.389
		16	0.866	5	0.246	13	0.090	9	1.202
		29	10.219	6	0.258	21	0.176	29	10.654
		28	7.748	14	0.457	9	0.082	28	8.286
		17	0.899	8	0.274	27	0.300	14	1.474
		22	1.268	28	1.526	3	0.061	23	2.856
		7	0.461	2	0.194	11	0.085	2	0.740
		25	2.732	20	0.646	30	0.409	24	3.787
		1	0.171	26	1.374	15	0.108	16	1.653
		2	0.246	22	0.832	7	0.075	7	1.152
		6	0.455	4	0.214	12	0.087	3	0.756
		20	1.148	23	1.132	2	0.054	20	2.333
		9	0.529	18	0.624	24	0.177	13	1.330
sample mean sample standard deviation	\bar{x}		2.126		0.922		0.142		3.190
	$\boldsymbol{\delta}$		3.664		1.282		0.091		4.221
	s / \bar{x}		1.72		1.39		0.64		1.32

n is the order number in the sample.

FIGURE 11-1. Sample CDF's for the Example (s-Normal distribution paper)
square distribution with 4 degrees of freedom, as required in Eq. 11-5. They are pseudorandom because they exist beforehand (for us) on a sheet of paper. Since the numbers are pseudo-random, a choice must be made on how to use them. Arbitrarily pick column i for $\hat{\lambda}_{i}, i=1,2,3$; and begin at the top and go down in sequence. We will hope that the method of generating these numbers did not have a "cycle" such that the rows contain highly correlated numbers.

Table 11-5 contains the calculations for the $\hat{\lambda}_{i}$ and for $\hat{\lambda}_{s} ; \hat{\lambda}_{s}$ is derived from Eq. 11-2. The estimate of $\hat{\lambda}_{l}$ in Table $11-5$ occupies the same relative position that the random number does in Table 11-4. Column 4 in Table 11-5 contains the estimates of the system failure rate. At the bottom of each column, there is the sample mean \bar{x}, sample standard deviation s, and the ratio s / \bar{x}.

As to be expected, the mean of $\hat{\lambda}_{z}$ is the sum of the means of the $\hat{\lambda}_{i}$. But the variance of $\hat{\lambda}_{s}$ is more thian the sum of the variances of the $\hat{\lambda}_{i}$. This means that there was some correlation along the rows. A statistical test showed that the ratio $17.82 / 15.08=1.18$ of the $\operatorname{Var}\left\{\hat{\lambda}_{s}\right\} /\left(\operatorname{Var}\left\{\hat{\lambda}_{1}\right\}+\operatorname{Var}\left\{\hat{\lambda}_{2}\right\}+\operatorname{Var}\right.$ $\left.\left\{\hat{\lambda}_{3}\right\}\right)$ would be exceeded by chance about ? 5% of the time; probably not too bad.

The sample Cdf's are plotted (smoothed sumewhat) in Fig. 11-1, on s-normal distribution paper (an s-normal $C d f$ would appear as a straight line). Needless to say, none of the distributions are s-normal. The $p d f$'s are all skewed to the right; there are some very large sample values. The coefficient of variation (s / \bar{x}) is more than 1 , which also shows the skewness of the distribu'hions.

The curves for $\hat{\lambda}_{l}$ would all be the same (except for scale) if very large samples were used.

The tests were all terminated at the second failure. Obviously, there is a great deal of scatter in the test results.

This Monte Carlo trial, by hand, has shown the shape of the central portion (say, 5% to 95%) of the distributions. More trials would extend that range. The example was set up to use only one probability distribution for the trials; this was for convenience in doing hand calculations. In practice the distributions need not be the same for all elements.

REFERENCES

1. A. H. Cronshagen, Application of Monte Carlo Techniques in Reliability Evaluation, Aerojet-General Corp., Azusa, Calif., 5 June 1962.
\&. C. W. Churchman, R. L. Ackoff, and E. L. Arnoff, Introduction to Operations Research, John Wiley and Sons, Inc., N.Y., p. 75.
2. DA Pam 70.5, Mathematics of Military Action, Operations and Systems.
3. M. L. Shooman, Probabilistic Reliability, McGraw-Hill Book Company, Inc., N.Y., 1968.
4. E. Parzen, Modern Probability Theory and Its Applicatioirs, John Wiley \& Sons, Inc., N.Y., 1960.
5. Mathematical Simulation for Reliability Predictions, RADC Report, Sylvania Electric Products, Waltham, Mass., October 1961.
6. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. II,Statistical Inference and Statistical Relation. ships, Hafncr, 3rd ed., 1971.

CHAPTER 12 RELIABILITY OPTIMIZATION

120 LEST OF SYMBOLS

$$
\begin{aligned}
& \text { a,b, } A=\text { matrices in par. 12-2.2 } \\
& f(x)=\text { some function of } x \\
& g(\alpha)=s 0 e \text { Eq. 12-3 } \\
& s_{i}(x)=\text { inequality-type constraint func- } \\
& \text { ision } \\
& h_{i}(x)=\text { equaits-type constraint function } \\
& r=\text { number of conitraints } \\
& \text { R, } \mathbf{R}_{\mathbf{i}}=\text { constraint sets } \\
& z_{-}=\text {denotes statistical definition } \\
& s=\text { gradient of } f(x) \text {, subecript } i \text { means } \\
& \text { value at iteration } i \\
& x_{1} x_{1}=\text { vector with several components, } \\
& \text { value at iteration } i \\
& x^{*}=x \text { for global minimum of } f \\
& x_{i} x_{\alpha}=\text { individual dimensions (compo- } \\
& \text { nents of } x \text {) } \\
& x_{0}=\text { some particular } x \text {; the starting } \\
& \text { point of } x \text { for an iterative solution } \\
& \text { for } f(x) \\
& \alpha, \alpha_{i}=\text { scalar parameter, for iteration } i \\
& \boldsymbol{\epsilon}=\text { some positive number (usually } \\
& \text { small) } \\
& \lambda, \lambda_{t}=\text { scalar parameter between } 0 \text { and } 1 \\
& \phi_{0}, \phi_{1}, \psi=\text { special functions (par. 12-3.6) } \\
& \psi^{\boldsymbol{T}}=\text { implies transpose of } \psi ; x \text { is any } \\
& \text { vector or matrix } \\
& \nabla=\text { gradient operator }
\end{aligned}
$$

12-1 INTRODUCTION

Seldom is it feasible to optimize a reliability function of a complicated system without using a computer. Thus, most of this chapter is written with computers in mind. Comput-er-aided design techniques offer the engineer relief from complicated calculations. Opimization programs can apply prespecified constraints and determine the most desirable component values. To accomplish these tasks, the computer must be provided with a method for generating alternate values for the design variables and some measure for comparing the resulting designs. This measure is usually a single function such as reliability, and the design goal is to optimize its value. A design which does this is called optimal. Methods for generating alternate solutions that account for constraints and that converge to an optimal solution generally are called math-
ematical programming techniquee.
Mathematical programming techniques optimize a given objective function $f(x)$ by proper choice of a vector of design variables x. If x is reatricted to certain allowable values, then the problem is constrained; if not, the problem is unconstrained.

The beanch of mathematical programming that deals with linear constraints and linear objective functions is called linear programming. Since it is widely used and well described elsewhere (Refs. 1 and 2), linear programming will not be discussed here. Instead, nonlinear programming problems, i.e., those which have at least one nonlinear constraint or a nonlinear objective function, or both, will be discussed. Multistage problems which fall under the heading of dynamic programming will also be considered.

In engineering problems, the designer often wants to maximize or minimize a function of n variables, $f(x)$, in a situation where the design constraints do not restrict the values of the variables x. Many problems in which the constraints are binding can be converted to unconstrained problems or sequences of such problems. Since the problem of maximizing $f(x)$ is equivalent to that of minimizing $-f(x)$, we need consider only the minimization problem.

A point x^{*} is said to be a global minimum of $f(x)$ if, for all values of x,

$$
\begin{equation*}
f\left(x^{*}\right)<f(x) . \tag{12-1}
\end{equation*}
$$

If the strict inequality holds, the minimum is said to be unique. If Eq. 12-1 holds only for all x in some neighborhood of x^{*}, then x^{*} is said to be a local minimum of $f(x)$, since in this case $x *$ is the best point in the immediate vicinity but not necessarily the best point in the whole region of interest.

If $f(x)$ is continuous and has continuous first and second partial derivatives for all x, the first necessary condition for a relutive minimum at i^{*} is that all the partial derivatives of $f(x)$ be zero, when evaluated at x^{*} (Ref. 3).

$$
\begin{equation*}
\left.\frac{\partial f(x)}{\partial x_{i}}\right|_{x^{*}}=0, \text { for all } i \tag{12.2}
\end{equation*}
$$

The second necessary condition is that the matrix of second partial derivatives evaluated at x^{*} be poritive semidefinite. Any point x^{*} that satisfies Eq. 12-2 is called a stationary point of $f(x)$. Sufficient conditions for a relative minimam are that the matrix of second partial derivatives of $f(x)$ be positive definite and that Eq. 12-2 must hold.

12-2 NUMERICAL METHODS FOR F! ING UNCONSTRAAHED MHINIMA

The most obvious approach to finding the minimum of $f(x)$ is to solve Eq. 12-2. If $f(x)$ is not quadratic, Eq. 12-2-the set of n equations in n unknowns-is nonlinear, and solving large sets of nonlinear equations is usually a very difficult task. The function $f(x)$ may be so complicated that it is difficult even to write Eq. $12-2$ in closed form. Further, even if the equations could be solved, there would be no guarantee that a given solution represented an actual minimum rather than some saddle point or maximum. We will, therefore, consider other methods of locating uncorstrained minima.

12-2.1 GRADIENT METHODS

If $f(x)$ is continuous and differentiable, a number of minimization techniques using the gradient of $f(x)$ are availaile. The gradient $\nabla f(x)$ is a vector pointing in the direction of greatest increase of $f(x)$. At any point x_{0}, the vector $f(x)$ is normai to the contour of constant function value which passes through x_{0}. Two methods are presented.

12-2.1.1 Strepest Descent

The method of steepest descent for minimizing $f(x)$ is detailed in Table 12-1. In Step 2 , the gradient can be found either by analytic formulas or by computing differences. Step 3 uses the direction of search determined in Step 2 and decides how far to move in this direction. The computer spends most of its time computing the gradient in this method, so the step length, α_{1} for Step i is selected to get the largest possible decrease in $f(x)$ for each gradient computation. Therefore, α_{i} is selected to minimize the function

$$
\begin{equation*}
g(\alpha)=f\left(x_{1}+\alpha s_{i}\right) . \tag{12-3}
\end{equation*}
$$

Define also,

$$
\begin{equation*}
s_{i}=-\nabla f\left(x_{i}\right) \tag{12-4}
\end{equation*}
$$

the gradient of f. Both x_{i} and s_{i} are known vectors; α is the only uniknown variable in Eq. 12-3.

The method of steepest descent converges to at least a local minimum of $f(x)$, providing certain mind restrictions are met (Ref. 5). The computations in Steps 2, 2, and 4 of the steepest descent method are repeated until a satisfactory value for x is found.

Several tests for determining when the computation should be stopped are also listed in Table 12-1. Stop Criteria 1 and 2 are based on the fact that the gradient vanishes at a minimum. When Criteria 3 and 4 are used, the computation will stop if the function value or current point changes by less than some small value ϵ. It has been found that Criterion 3 is the most dependable, providing it is met for several successive values of i. In all criteria, ϵ is a small positive number which the user selects. As ϵ decreases, the location of the minimum is more accurate, but more iterations are required to achieve this accuracy.

12-2.1.2 Cubic and Quadratic Interpolation

Finding a value α^{*} to minimize Eq. 12-3 can be thought of as a problem of 1-dimensional ninimization in the direction of s_{i}. The cubic interpolation procedure outlined in Table $12-1$ solves this problem for any given direction of s_{i} in which the function $f(x)$ initially decreases.

For the cubic interpolation procedure and the quariratic interpolation which follows, the components of x are scaled so that a unit change in any variable is an important (but not too large) fractional change in that variable. For example, if a capacitor is expented to have a value near $100 \mu \mathrm{~F}$, then a $1 \mu \mathrm{~F}$ change would be important, but a $10 \mu \mathrm{~F}$ change would be too large.

Steps 1 and 2 of the cubic interpolation procedure normalize s so that its components are less than or equal to 1 in magnitude. This, along with scaling, insures that s is a reasonable change in x . Step 3 moves along the direction s to place the desired minimum valse α^{*} in the interval $a<\alpha^{*}<b$. Steps 4 throagh

TABLE 12-1

OPTMIZIMG UNCONETRAIMED FROBLEME

inerod of smepret Deverit

1. Stint the computation at some initial point \bar{x}_{0}, wanally the beat avilable extimate of the minimum. The i th itemtion ($i=0,1,2$, ...) proceeds is follows.
2. Compute the gradient $\nabla f\left(x_{i}\right)$ and let the current \subset © ection of search be $\bar{s}_{l}=-\nabla \wedge\left(x_{i}\right)$.
3. Compute a step length a_{l} by choosing α_{i} to minimbere $f\left(\bar{x}_{1}+\alpha \bar{s}_{l}\right)$. Cubic and quadratic interpolation procedures are detailed below.
4. Compute a succesor vector for \bar{x}_{i} :

$$
\bar{x}_{i+1}=\bar{x}_{i}+a_{i} \bar{z}_{i}
$$

5. Check a stop criterion (see below). If it is satisfied, stop. Otherwise, return to step 2 and replace i by $i+1$.

Pomible Stop Critoria for Torminating Computation

1. $\operatorname{Max}_{i}\left|\frac{\partial f}{\partial x_{j}}\right|<\epsilon$
2. $\sum_{i_{1}}^{n}\left(\frac{\partial f}{\partial x_{j}}\right)^{2}<\epsilon$
3. $f\left(\bar{x}_{1}\right)-f\left(\bar{x}_{i+1}\right)<\epsilon$
4. $\operatorname{Max}_{j}\left(\left|\bar{x}_{i+1}-\bar{x}_{i}\right|\right)_{j}<\epsilon$

Cubic interpolation

1. Calculate Δ, the maximum value of $\left|s_{j}\right|$.
2. Divide each component of the vectoi \bar{s} by Δ.
3. Compute $g(\alpha)$ and $g^{\prime}(\alpha)=s^{\prime}$ $\nabla f(\bar{x}+\alpha \bar{s})$ for $\alpha=0,1,2,4, \ldots a$, b, where b is the first of these values at which either g ' is nonnegative or g has not decreased. If $g(1) \gg$ $g(0)$, divide the components of \bar{s} by some factor (2 or 3) and repeat this step.
4. Compute
$z=3 \frac{g(a)-z(b)}{b-a}+\varepsilon^{\prime}(a)+s^{\prime}(b)$
5. Compute

$$
w=\left[s^{2}-s^{\prime}(c) \chi^{\prime}(b)\right]^{k}
$$

6. Ccompute
$a_{e}=b-\frac{\varepsilon^{\prime}(b)+w-z}{\varepsilon^{\prime}(b)-\varepsilon^{\prime}(a)+z w}(b-a)$
7. If $g\left(\alpha_{e}\right)<\Sigma(a)$ and $g\left(\alpha_{e}\right)<$ $g(b)$, accept α_{e} as the desired minimum value a^{*}.
8. If $g\left(\alpha_{e}\right) \geqslant g(a)$ or $g\left(\alpha_{e}\right) \geqslant$ 0 , repeat steps 4 through 6 using b $-\alpha_{e}$.
9. Otherwise, repeat steps 4 through 6 using $a=\alpha_{e}$.

Ouadratic Irterpolation

1. Calculate Δ, the maximum value of $|\bar{s}|$.
2. Divide each component of the vector \bar{s} by Δ.
3. If $g(1)>g(0)$, compute $g(\alpha)$ for $\alpha=1 / 2,1 / 4, \ldots$ until $g(\alpha)<g(0)$. Set $a=0, b=\alpha$, and $c=2 \alpha$ and yo to step 5.
4. Compute $g(\alpha)$ for $\alpha=0,1$, $2,4,8, \ldots, a, b, c$. Stop the compu. tation at $\alpha=c$ when the prewent value of $g(\alpha)$ is greater than the last computed value.

5. Compute

$\alpha_{e}=$

$$
\begin{aligned}
& 1 /\left[g(a)\left(c^{2}-b^{2}\right)+g(b)\left(a^{2}-c^{2}\right)\right. \\
& \left.+g(c)\left(b^{2}-a^{2}\right)\right] \\
& \div[g(a)(c-b)+g(b)(a-c) \\
& +g(c)(b-a)]
\end{aligned}
$$

6. If $g\left(x_{e}\right)<g(b)$, accept α_{e} as the desired minimum value α^{*}; otherwise accept b as the desired vilue α^{*}.

The Fintcher-Powall Nethod

1. Start with a positive defin-
ite matrix H_{0} (usuilly chowen as the icontity matrix) and an initial point \bar{x}_{1}. The ith step, $i=0,1, \ldots$ proceeds as follows.
2. Compute tisc gradient, $\nabla f\left(\bar{x}_{i}\right)$.
3. Compute the direction:

$$
\bar{\delta}_{i}=-H_{i} \nabla f\left(x_{i}\right)
$$

4. Chooce a step length α_{i} to minimize $s(\alpha)=f\left(\bar{x}_{i}+\bar{a}_{i}\right)$. See cubic or quadratic interpolation procełure above.
5. Compute $\delta_{i}=\alpha_{i} \overline{i_{i}}$
6. Compute a new value \bar{x}_{i+1} from the relationship

$$
\bar{x}_{i+1}=\bar{x}_{i}+\alpha_{i} \bar{s}_{i}
$$

7. Compute

$$
\bar{y}_{i}=\nabla f\left(\bar{x}_{i+1}\right)-\nabla f\left(\bar{x}_{i}\right)
$$

8. Compute the matrix

$$
A_{i}=\frac{\bar{\sigma}_{i} \bar{\sigma}_{i}^{\prime}}{\bar{\sigma}_{i}^{\prime} \bar{y}_{i}}
$$

9. Compute the matrix

$$
B_{i}=\frac{-H_{i} \bar{y}_{i} \bar{y}_{i}^{\prime} H_{l}}{\bar{y}_{i}^{\prime} H_{i} \bar{y}_{i}}
$$

10. Compute the successor matrix

$$
H_{i+1}=H_{i}+A_{i}+B_{i}
$$

11. Chesk the stop criterion. If it is satisfied, stop. Otherwise, retum to step 2, using the succuscor matrix'as the new H_{i}, and replace i by $i+1$.

The Conjugate Gradient Nethod

1. Start with an initial vector of variables \bar{x}_{0} and an initial direc. tion $\bar{s}_{0}=-\nabla f\left(\bar{x}_{0}\right)$. The ith step (i $-0,1,2, \ldots)$ proceeds as follows.
2. Choose a step length α_{1} to minimize

$$
g(\alpha)=f\left(\bar{x}_{i}+\alpha \bar{x}_{i}\right)
$$

See cubic or quadratic interpolation procedure above.

TABLE 12-1 (cont'd)

OMTIMZINE UNCONETRAINED PMOXEMS

8. Compate a new vector of Pownit's Mintrod

 varisbles,$$
\bar{x}_{i+1}=\bar{x}_{i}+a_{i} \bar{x}_{i}
$$

4. Compute $\nabla f\left(\bar{x}_{i+1}\right)$.
5. Compute

$$
B_{i}=\frac{\nabla f^{\prime}\left(\bar{x}_{i+1}\right) \nabla f\left(\bar{x}_{i+1}\right)}{\nabla f^{\prime}\left(\bar{x}_{j}\right) \nabla f\left(\bar{x}_{j}\right)}
$$

6. Compute a succemor direction,

$$
s_{i+1}=-\nabla f\left(x_{i+1}\right)+\beta_{i} s_{i}
$$

7. Check a stop criterion. If is is satisfied, stop. Otherwive, retu:s to step 2 and replace i by $i+1$.
8. For $r=1,2, \ldots, n$, calculate $\alpha_{p} s 0$ that $f\left(\bar{x}_{r-1}+\alpha \bar{s}_{r}\right)$ is a minimum (see cubic or quadratic interpolution procedure) and define

$$
\bar{x}_{r} m \vec{x}_{r-1}+\alpha_{r} \bar{s}_{r}
$$

2. Find the intexter $m, 1 \leqslant m$ $\leqslant n$, so that $\left[f\left(\bar{x}_{m-1}\right)-f\left(\bar{x}_{m}\right)\right]$ in a maximum, and define

$$
\Delta=f\left(\bar{x}_{m-1}\right)-f\left(\bar{x}_{m}\right)
$$

3. Calculate $f_{3}=f\left(2 \bar{x}_{n}-\bar{x}_{0}\right)$ cod define $f_{:}=i\left(\bar{x}_{0}\right)$ and $f_{2}=$ $f\left(\bar{x}_{n}\right)$.
4. II $f_{3} \geqslant f_{1}$ or if $\left(f_{1}-f_{2}+\right.$ f_{3}). $\left.f_{1}-f_{2}-\Delta\right)^{2} \geqslant 1 / 2 \Delta \cdot\left(f_{1}-\right.$ $\left.f_{3}\right)^{2}$, or both, une the old directions $\bar{s}_{1} \bar{\delta}_{2}, \ldots, \bar{s}_{n}$ for the next iteration and une $\bar{x}_{n} a$ the next \bar{x}_{0}.
5. If peither condition in step 4 holds, define $\bar{s}-\left(\bar{x}_{n}-\bar{x}_{0}\right)$, and calculate α so that $f\left(\bar{x}_{n}+\alpha s\right)$ is a minimum (see cubic or quacratic interpolation procedure).
6. Use $\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{m+1}, \bar{s}_{m+1}$, \ldots, \bar{s} a the directions for the next iteration and $\bar{x}_{n}=$ es for the next \bar{x}_{0}

6 fit a cubic polynomial to the computed values $g_{(a)}, g_{(a)}^{\prime}, g_{(b)}$, and $g_{(b)}^{\prime}$. This polynomial has a unique minimum located at α_{e} in the interval between a and b. In Step 7, α_{e} is taken as the desired value of α^{*} if α_{e} is a better choice than either a or b. If not, the interpolation is repeated over a smaller interval in Steps 8 and 9.

If derivatives are not available or are difficult to compute, the quadratic interpolation procedure can be used for 1-dimensional minimization. Step 5 of this procedure fits a quadratic polynomial to the three values $g_{(a)}, g_{(b)}$, and $g_{(c)}$. The minimum of this polynomial is located at α_{e}.

The most that can be guaranteed by the steepest descent method, or any other iterative minimization technique, is that it will find a local minimum, usually the one "nearest" to the starting point x_{0}. To attempt to find all local minima (and thus the global minimum), the usual approach is to repeat the minimization from many different initial points.

12-2.1.3 Numerical Difficulties

Since successive steps of the method of steepest descent are orthogonal, some functions converge very slowly. If the function
contours are circles (or, in the n-dimensional case, hyperspheres), the method finds the minimum in one step. However, for other contours, the gradient direction is generally quite different from the direction to the minimum, and the method produces the inefficient zig-zag behavior shown in Fig. 12-1. Since many, if not most, of the functions occurring in practical applications have eccentric or nonspherical contours, we often must turn to more efficient methods than steepest descent.

12-2.2 SECOND-ORDER GRADIENT METHODS

A number of minizaization techniques have been developed to overcome the difficulties of the method of steepest descent. The general notion behind these techniques is that methods which quickly and efficiently minimize a general function must fulfill two criteria. They must work well on a quadratic function, and they must be guaranteed to converge (eventually) for any general function. These criteria are based on the observation that, since the first partial derivatives of a function vanish at the minimum, a Taylor series expansion about the minimum x^{*} yields

The parabolas are equivalue contours of the objective function $y=16 x_{1}^{2}+\left(x_{2}-4\right)^{2}$. The heavy zig-zag line shows the path taken by a steepest descent procedure seeking the minimum value of this function.

FIGURE 12-1. Finding the Minimum Using the Steepest Descent Methoo ${ }^{4}$

$$
f(x)=f\left(x^{*}\right)+1 / 2\left(x-x^{*}\right)^{T} H_{f}\left(x^{*}\right)\left(x-x^{*}\right),
$$

where
T indicates the transpose of a matrix and

$$
H_{f}\left(\mathbf{x}^{*}\right)=\text { matrix of second partials of } f
$$ evaluated at x^{*}.

H_{f} is assumed to be positive definite; thus, the function behaves like a pure quadratic in the vicinity of x^{*}.

12-2.2.1 Conjugate Directions

Most, if not all, of the newer, more efficient unconstrained ninimization procedures are based on the idea of conjugate directions (Refs. 6-8).

The general (positive definite) quadratic. function can be written as

$$
\begin{equation*}
q(x)=a+b^{T} x+x^{T} A x \tag{12-6}
\end{equation*}
$$

where the matrix A is positive definite and symmetric. The procedure for finding the minimum value $q\left(x^{*}\right)$ consists of starting at some initial point x_{0} and tating sucuesive stepe along the directions $s_{0}, s_{1}, \cdots, s_{n-1}$. All these directions are chosen to be A-conjugate; i.e., for all $i \neq j, i, j=0,1, \cdots, n-1$, these directions satisfy the relationship

$$
\begin{equation*}
s_{i} A_{A} s_{j}=0 . \tag{12-7}
\end{equation*}
$$

Successive points in the minimization procedure are computed from

$$
\begin{equation*}
x_{i+1}=x_{i}+\alpha_{i} s_{i} . \tag{12.8}
\end{equation*}
$$

As in the steepest descent method, the value of the step size α_{i} is found by minimizing $f\left(x_{i}+\alpha s_{i}\right)$.

It can be shown that, regardless of the starting point, this sequential process leads to the desired minimum value of $q\left(x^{*}\right)$ in n steps or less (where n is the number of variables in the vector x) (Ref. 8). Thus, conjugate directions minimize a quadratic very efficiently.

12-2.2.2 The Fletcher-Powell Method

The method presented by Fletcher and Powell (outlined in 'lable 12-1) is probably the most powerful general procedure now known for finding a local minimum of a general function $f(x)$ (Refs. 8 and 9).

Central to the method is a symmetric, positive definite matrix H_{i}, which is updated at each iteration, and which supplies the current direction of motion s_{i} when multiplied by the gradient vector. The numerators A_{i} and B_{i} in Steps 8 and 9 of the Fletcher-Powell method are both matrices, while the denominators are scalars. Fletche: and Powell have demonstrated that their method will always converge, since the objective function f is initially decreasing along the direction s_{i}. When the method is applied to a quadratic (Eq. 12-5), the directions s_{i} are A-conjugate, and the process converges to a minimum in n steps. The matrix $: t_{1}$ converges to the inverse matrix A^{-1} after n steps. When applied to a general function, H_{1} tends to become the
inverse of the matrix of second partial derivetives of $f(x)$ evaluated at the optimum.

Numerical tects bear out the rapid convergence of this method. Consider, for example, the function

$$
\begin{equation*}
f\left(x_{a}, x_{b}\right)=100\left(x_{b}-x_{a}^{2}\right)^{2}+\left(1-x_{b}\right)^{2} \tag{12-9}
\end{equation*}
$$

This is called the Romenbrock function (Ref. 10). Its contours are shown in Fig. 12-2. The minimum is at (1,1), and the steep curving valley along $x_{b}=x_{s}^{2}$ makes minimization difficult. The paths taken by the optimum gradient technique and by the Fletcher-Powell method are also in Fig. 12-2. Notice that the Fletcher-l?owell technique follows the curved valley and minimizes very efficiently.

Another conjugate direction minimization technique is the conjugate gradient method, outlined in Table 12-1. It requires compuration of the gradient of $f(x)$ and storage of only one additional vector, the actual direction of search (Ref. 9). This method is not quite as efficient as the Fletcher-Powell technique but requires much less storage, a significant advantage when the number of variables n is large (Ref. 9).

There are a number of minimization techniques that do not require derivatives. Powell's method seems to be the most efficient of these (Refs. 8 and 9). In this method, outlined in Table 12-1, each iteration requires n 1-dimensional minimizations down n linearly independent directions, $s_{1}, s_{2}, \cdots, s_{n}$. As a result of these minirnizations a new direction s is defined. If a specified test is passed, s replaces one of the original directions. The process usually is started from the best estimate of the minimizing x using the initial s_{i} 's as the reference coordinate directions.

12.3 CONSTRAINED OPTIMIZATION PROBLEMS

In constrained minimization problems, the variables x may take on only certain allowable values. In Fig. 12-3, for instance, the unshaded area is the set of allowable values of variables x_{c} and x_{b}, called the constraint set. This is the set of all points satisfying the inequalities $x_{a} \geqslant 0, x_{b} \geqslant 0, g_{1}(x) \geqslant 0$, and $E_{2}(x) \geqslant 0$.

A general programming problem may have equality constraints as well as inequality constraints. Equalities often describe the operation of a system, while inequalities define limits within which certain physical variables must lie. Thus the general problem of constrained minimization can be posed as one of minimizing the objective function $f(x)$ subject to inequality and equality constraints:

$$
\left.\begin{array}{l}
g_{i}(x) \leqslant 0 \tag{12-10}\\
h_{i}(x)=0 \quad i=1,2, \cdots, s
\end{array}\right\}
$$

When the functions f, g_{j}, and h_{j} are all linear, the problem is one of lineru programming; if any of the functions are nonlinear, the procramming problem is nonlinear.

Constrained optimization problems are generally more difficult to solve than those without constraints. However, it is sometimes possible to eliminate inequality constraints by appropriate transformations. A number of transformations, as well as seguences of transformation, have been found usefial (Ref. 10).

12-3.1 NONLINEAR CONSTRAINTS

A specific nonlinear programming problem is shown in Fig. 12-4. The constraints are all linear inequalities $\left(x_{1} \geqslant 0, x_{2} \geqslant 0\right.$, $5-x_{1}-x_{2} \geqslant 0,-2.5+x_{1}-x_{2} \leqslant 0$) which form a constraint set with four corners. The nonlinear objective function, represented by a set of concentric circles, is

$$
f(x)=\left(x_{1}-3\right)^{2}+\left(x_{2}-4\right)^{2} \cdot(12-11)
$$

The minimum value of $f(x)$ corresponds to the contour of lowest value having at least one point in common with the constrairt set. This is the contour labeled $f(x)=2$, and the desired solution is at its point of tangency with the constraint set ($x_{1}^{*}=2, x_{2}^{*}=3$); this is not a cornex point of the set, although it is a boundary point (for linear programs, the minimum is always at a corner point). Fig. 12-5 shows what happens to the problem when the objective function is changed to

$$
f(x)=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}
$$

The minimum is now at $x_{1}^{*}=2, x_{2}^{*}=2$, which is not even a boundary point of the constraint set. Therefore, this problem could have been solved as an unconstrained minimization of $f(x)$.

The Fletcher-Powell procedure found the minimum in 17 computational iterations. The optimum gradient technique required 67 iteations.

FIGURE 12.2. Comparison of Fletcher-Powell and Optimum Gradient Techniques for Minimizing a Difficult Function ${ }^{8}$

AMCP 706.197

Allowable values for the variables in a problem may be limited or constrained. The area within four boundary curves is called the constraint set.

FIGURE 12-3. Constraint Set

Values of the nonlinear objective function, which is to be minimized, are shown as concentric circles. The constrained minimum is one of these lines.

FIGURE 12-4. Nonlinear Programming Problem With Constrained Minimum ${ }^{4}$

When the minimum value of the objective function is inside the constraint set, the constraint does not affect the solution. Here the point $f(x)=0$ is the desired minimum value.
fIGURE 12.5. Nonlinear Programming Probiem With Objective Function Inside the Constraint Set ${ }^{4}$

As an example of a nonlinear problem in which local optima occur, considier an objective function with two minima, both of which fall within the constraint set so that there are two local minima. Contours of such a function are like those shown in Fig. 12-6.

The chief nonlinearity in a programming problem often appears in the constraints ratier than in the objective function. The constraint set will then have curved boundaries. A problem with nonlinear constraints can very easily have local optima, even if the objective function has only one unconstrained minimum. This is demonstrated in Fig. 12-7, where there is a nonlinear objective function with a nonlinear constraint set that gives local optima at the two points a and b. No point of the constraint set in the immediate vicinity of either point yields a smaller value of $f(x)$.

AM:CP 706-197

From these examples we can see that the optimum of a nonlinear programming problem will not necesarily be at a comer point of the constraint set and may not even be on the boundary. In addition, there may be local optima distinct from the global optimum. These properties are direct conmequences of the nonlinearity. However, a class of nonlinear problems can be defined which are guaranteed to be iree of distinct local optima. These are called convex programming problems. Before some of the specific methods of solving constrained minimization problems are described, the concept of convexity and its implications for nonlinear programming will be dissussed.

12-3.2 CONVEXITY

There are several reasons why the concepts of convexity and convex functions (which will be defined in this paragraph) are important in nonlinear programming. It is usually impossible to prove that a given procedure will find the global minimum of a nonlinear programming problem unless the prob-

Thare may be more than one minimum point within the constraint set. Here, $f(x)=4$ and $f(x)=3$ are

Here the constraint set has curved boundaries which cause the local minimum $f(x)$ to be 40 ; the global minimum $f(x)$ in this case is 15.
figure 12-7. Local Minims Due to Curved Constraints
lem is convex. Even though there are many real-world problems that are not convex, results obtained under convexity assumptions often can give insight into the properties of more general problems. Sometimes, such results even can be carried over to problems that are not convex, but in a weaker form. In fact, few important mathematical results have been derived in the programming field without assuming convexity.

Convexity thus plays a role $\because:$ mathematical programming which is similar to the role of linearity in the study of dynamic systems, where many results derived from linear theory are used in the design of nonlinear control systems.

The main theorem of convex programming is that any local minimum of a convex programming problem is a global minimum. If the prohlem has a number of points at which the global minimum exists, the set of all such points is conyex, and no distinct, separate, local minima with different functional values can exist. This is a very convenient property since it greatly simplifies the task of locating the global minimum.

A set of points is convex if the line segment joining any two of these points remains in the set. In Fig. 12-8, sets A and B are convex, while C is not. A convex set can be

A linear constrain: set is always convex.
FIGURE 12-8. Convex and Nonconvex Sets ${ }^{4}$
thought of as one whose walls do not bulge inwards. The constraint set of a linear programming problem is always convex.

In the multidimensional case, these geometrical ideas must be formulated in algebraic terms. In particular, the line segment between two points must be defined. If the two points are x_{1} and x_{2}, the segment between them is the set

$$
\begin{equation*}
S=\left\{x \mid x=\lambda x_{1}+(1-\lambda) x_{2}, 0<\lambda<1\right\} . \tag{12-13}
\end{equation*}
$$

If $\lambda=0, x=x_{2}$; if $\lambda=1, x=x_{1}$; as λ varies between these extreme values, x moves along
the line joining x_{1} and x_{2}. This can easily be verified in two or three dimensions.

A function $f(x)$ is convex if the line segment drawn between any two points on the graph of the function never lies below the graph. If the line segment never lies above the graph, the function is concave. Examples of concave and convex functions are shown in Fig. 12-9. The left function is strictily convex, since the line segment is always above the function; the right function is strictly concave. A linear function is both convex and concave, but neither strictly convex nor strictly concave.

A linear function is both convex and concave.
FIGURE 12.9. Concave and Convex Functions ${ }^{4}$

Algebraically, a function $f(x)$ is convex if $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$
for all x_{1}, x_{2} in the (convex) domain of definition of f. The function is strictly convex if the strict inequality holds.

A convex programming problem is one of minimizing a convex function over a convex constraint set. As we mentioned earier, the main theorem regarding such programs is that any local minimum of a convex programming problem is a global minimum. Furthermore, if there are a number of points at which the global minimum is attained, the set of all such points is convex. Thus, there can be no separated local minima with different functional values. Since most procedures can locate only local minima, these properties are very advantageous. The theorems of convexity (Refs. 11 and 12) listed in Table 12-2 allow this to be done in some cases.

As a consequence of convexity theorems 1 and 2, the problem of minimizing a convex function $f(x)$, subject to r constraints $g_{1}(x)>$ $b_{i}, i=1, \cdots, r$ with all g_{i} convex, is always a convex programming problem. This is true because, from theorem 1 , each of the sets

$$
\begin{equation*}
\mathbf{R}_{i}=\left\{x \mid g_{i}(x)>b_{i}\right\} \tag{12-15}
\end{equation*}
$$

is convex. The constraint set R, which is the intersection of all the sets \mathbf{R}_{i} is also convex by convexity theorem 2.

Since all linear functions are convex, a linear programming problem is always a convex programming problem. This establishes more firmly the geometrically evident fact that a linear program cannot have local optima distinct from the global optimum.

Since convex programs can be identified by determining whether the objective and constraint functions of the problem are convex, it is important to characterize convex functions closely. This can be done by using convexity theorems 3 through 6 . Statement b in theorem 3 says that the function, evaluated at any point x_{1}, never lies below its tangent plane passed through any other point X_{2}. Theorem 4 is a direct consequence of statement c in theorem 3.

Since $f(x+\alpha s)$ is the function evaluated at points along the line s passing through the
point x, theorem 6 implies that a convex function is convex along any line. This allows us to test to see whether a given function of n variables is noi sonvex, for if any line in n-dimensional space can be found along which $g(\alpha)$ is not convex, then $f(x)$ is not convex either.

12-3.3 MIXED PROBLEMS

Many problems involve both equality and inequality constraints. In such problems, it has been found that the linear function $g(x)=\mathrm{a}^{T} x$ is the only function for which the set

$$
\begin{equation*}
R=\{x \mid g(x)=0\} \tag{92-19}
\end{equation*}
$$

is convex.
Nonlinear functions in two dimensions have graphs that are curved surfaces. If x_{1} and x_{2} are on the graph and are, therefore, in the constraint set R, then points on the line segment joining x_{1} and x_{2} will, in general, not lie on the graph (will not be in R). A hyperplane, being "flat", is an obvious exception.

Consider the problem of minimizing $f(x)$ subject to the constraints $g_{i}(x)>0, i=1, \cdots, r$ and $h_{j}(x)=0, j=1, \cdots, s$. From the preceding statements, this may not be a convex programming problem if any of the functions $h_{j}(x)$ are nonlinear. This, of course, does not preclude efficient solution of such problems, but it does make it more difficult to guaran. tee the absence of local optima.

In many cases, the equality constraints can be used to eliminate some of the variables, leaving a problem with only inequality constraints and fewer variables. Even if the equalities are difficult to solve analytically (for example, if they are highly nonlinear), it may still be worthwhile to solve them numerically. Such an approach has been used successfully for structural design (Refs. 13 and 14).

12-3.4 THE KUHN-TUCKER CONDITIONS

The most important theoretical results in the field of nonlinear programming are the conditions of Kuhn and Tucker, which must be satisfied at any constrained optimum, local or global, of any linear and of most nonlineas programming problems (Ref. 15). These con-

TABLE 12-2
OPTIMIZING CONSTRAINED PROBLENS

Convexity Theorente
Theorem 1. If $f(\bar{x})$ is convex, the set

$$
R=\{\bar{x} \mid f(\bar{x})<k\}
$$

is convex for all scalags (k).
Theorem 2. The intersection of any number of convex sets is convex.

Thecrem 3. If $f(\bar{x})$ has continuous first and second derivatives, the following three statements are all equivalent:
a. $f(\bar{x})$ is convex;
b. $f\left(x_{1}\right) \geqslant f\left(\bar{x}_{2}\right)+\nabla f\left(\bar{x}_{2}\right)$. $\left(\bar{x}_{1}-\bar{x}_{2}\right)$ for any two points $\bar{x}_{1},{ }_{2}$;
c. the matrix of second partial derivatives of $f(\bar{x})$ is positive semidefinite for all points \bar{x}.
Theorem 4. A positive semidcfinite quadratic form is convex.

Theorem 5. A positive linear combination of convex functions is convex.

Theorem 6. A function $f(\bar{x})$ is convex if and only if the onedimensional function $g(\alpha)=f(\bar{x}+$ QB) is convex for all fixed \bar{x} and $\bar{\delta}$.

Zoutendijk's Method of Femible Directions

1. Staxt with an initial point x_{0} which satisfies all constmints. For $i=0,1, \ldots$, do the following steps.
2. At the current point, x_{i}, determine which constraints are binding (or almost binding) and form the set I containing their indices.
3. Choose a set of $\theta_{i}(0<\theta \leqslant$ 1) used to steer away from nonlinear constraint boundaries.

4: Compute new usable Peusible direction, \bar{s}_{t}, by solving the direction-finding problem of minimizing ξ subject to the conditions

$$
\begin{gathered}
\nabla \varepsilon_{f}^{\prime}\left(\bar{x}_{i}\right)+\theta_{j} \xi \geqslant 0 \\
\nabla f^{\prime}\left(\bar{x}_{1}\right) \bar{s}-\xi \geqslant 0 \\
\bar{s} \cdot \bar{s}=1
\end{gathered}
$$

If the minimum value of $\xi>0$, no such direction exists and the computation is terminated. The current point is generally a local constrained minimum. If. $\xi<0$ proceed to step 5.
5. Compute a step length α_{i} by minimizing $f\left(\bar{x}_{i}+\alpha \bar{x}_{i}\right)$ subject to the condition that $\bar{x}_{i}+\alpha \bar{c}_{i}$ violates no constraints.
6. Using α_{i}, sompute a successor point $\bar{x}_{0}+1=x_{i}+\alpha_{i} \bar{s}_{i}$ and re. tum to step 2 with i replaced by $i+$ 1.

Rosen's Gradient-Projection Mothod

1. Start at a point x_{0} that satisfies the constraints. The ith iteration, $i=0,1, \ldots$ proceeds as follows:
2. Compute $\nabla f\left(\bar{x}_{1}\right)$.
3. Determine which construints are binding at \bar{x}_{i} and call these the constraints associated with \bar{x}_{i}.
4. Compute \vec{s}_{i}, the projection of $-\nabla f\left(\vec{x}_{1}\right)$, on the intersection of the constraints associated with the point \bar{x}.
5. If \bar{s}_{i} is not the zero vector, compute a step length α_{i} by minimizing $g(\alpha)=f\left(\bar{x}_{i}+\alpha \bar{x}_{i}\right)$ subject to the condition that $\bar{x}_{i}+\alpha \bar{x}_{i}$ violates no constraints. This determines a new point $\bar{x}_{i+1}=\bar{x}_{i}+\alpha_{i} \bar{\varepsilon}_{i}$. Returm to step 2 and replace i with $i+1$.
6. If \bar{s}_{1} is zero, then

$$
\nabla f\left(\bar{x}_{l}\right)=\sum_{j} u_{j} \bar{\alpha}_{j}
$$

which is a linear combination of normals $\bar{\alpha}_{j}$ to the binding constraint planes.
7. If all $u_{j} \geq 0$, then \bar{x}_{i} is the solution of the problem, for the Kuhn-Tucker conditions are satisfied.
8. Otherwise, define a new set of planes to be ascociated with $\overline{x_{i}}$ by deleting from the present set one plane for which $u_{j}<0$, and retum to step 4.

The Fiacco-NeCormick Conditions

1. The interior of the constraint set is non-empty.
2. The functions f and s_{i} are twice continuously differentiable.
3. The set of points in the constraint set for which $f(\bar{x})<k$ is bounded for all $k<\infty$.
4. The function $f(\bar{x})$ is bound. ed below for \vec{x} in the constraint set.

- If conditions 1 through 4 hold, at least one finite local minimum of $P(\bar{x}, y)$ [see Eq (24)] exists within the constraint set for any r >0. Furthermore, f is monotonically nonincreasing as r is reduced (Ref. 25).

5. $f(\bar{x})$ is convex.
6. The $g_{i}(\bar{x})$ are concave functions.
7. $P(\bar{x} y)$ is strictly convex in the interio of the constraint set for any $r>0$.

- If conditions 5 though 7 also hold, there is a convex programming problem; any local minimum is global, and the procedure converges to the global minimum as $r \rightarrow 0$.

The Fiacco-NcCormick Method

1. Start with \bar{x}_{0}, which must be strictly inside the constraint set, and $r_{1}>0$. Let $i=1,2, \ldots$.
2. Minimize $P\left(\bar{x}, r_{i}\right)$, starting from \bar{x}_{i-1}, and subject to no constraints.
3. Reduce r by choosing r_{i+1} $<r_{i}$, and return to step 2 with i replaced by $i+1$.
4. Stop if the change in the objective function fails to esceed a specified value for some predetermined number of iterations.
ditions form the basis for the development of many computational procedures. In addition, the criteria for stopping many procedures (i.e., for recognizing when a local constrained optimum has been achieved) are derived directly from these conditions.

The soncept of a cone can be used to help visualize the Kuhn-Tucker conditions. A cone is defined as a set of points R such that, if x is in $R, \lambda x$ is also in R for $\lambda \geqslant 0$. A convex cone R has the additional property that if x and y are in $R, x+y$ is also in R. The set of all non-negative linear combinations of a finite set of vectors forms a convex cone; i.e., the set R is a convex cone, where

$$
\begin{align*}
R= & \left\{x \mid x=\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m} ;\right. \\
& \left.\lambda_{i} \geqslant 0 ; i=1, \ldots, m\right\} . \tag{12-17}
\end{align*}
$$

The vectors $x_{1}, x_{2}, \cdots, x_{m}$ are called the generators of the cone. For example, the convex cone of Fig. 12-10 is generated by the vectors $(2,1)$ and $(2,4)$. Any vector that can be expressed as a non negative linear combination of these vectors lies in this cone. In Fig. 12-10 the vector $(4,5)$ in the cone is given by

$$
\begin{equation*}
(4,5)=1 \cdot(2,1)+1 \cdot(2,4) \tag{12-18}
\end{equation*}
$$

The Kuhn-Tucker conditions are predicated on the fact that at any constrained opti-

The shaded area represents a cone generated by vectors $(2,1)$ and $(2,4)$.

FIGURE 12-10. Convex Cone
mum, no small, allowable change in the problem variables can improve the objective function. To illustrate this, consider the nonlinear programming problem shown in Fig. 12-11. It is evident that the optimum is at the intersection of the two constraints. At $(1,1)$ in Fig. 12-11 the set of all feasible directions lies between the line $-x-y+2=0$ and the tangent line $y=2 x-1$. In other words, this set is the cone generated by these two lines. The vector $-\nabla f$ points in the direction of the maximum rate of decrease of the objective function $f(x, y)$. A move along any direction making an angle of less than 90 deg with $-\nabla f$ will decrease $f(x, y)$. Thus, at the optimum, there can be no feasible direction with an angle of less than 90 deg between it and $-\nabla f$.

The negative gradients $-\nabla g_{1}$ and $-\nabla g_{2}$ are also shown in Fig. 12-11; and - ∇f is contained in the cone generated by these negative gradients. If $-\nabla f$ were not contained in the cone, but slightly above $-\nabla g_{2}$, it would make an angle of less than 90 deg with a feasible direction just below the line $-x-y+2=$ 0 . Similarly, if $-\nabla f$ were slightly below $-\nabla$ g_{1}, it would make an angle of less than 90 deg with a feasible direction just above the line y $=2 x-1$. Neither of these cases can occur at an optimum point, and both cases are excluded if and only if $-\nabla f$ lies within the cone generated by $-\nabla g_{1}$ and $-\nabla g_{2}$. This is the geometric statement of the Kuhn-Tucker conditions; a necessary condition for x to minimize $f(x)$, subject to the constraints $g_{i}(x)>0$ where $i=1, \cdots, r$, is that the gradient ∇f lie within the cone generated by the gradients of the binding constraints.

In an algebraic statement of the KuhnTucker conditions, since ∇f lies within the cone described, it must be a nonnegative linear combination of the gradients of the binding constraints. In other words, there must exist numbers $u_{i} \geqslant 0$ such that

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=\sum_{i=1}^{p} u_{i} \nabla g_{i}\left(x^{*}\right) \tag{12-19}
\end{equation*}
$$

where the binding constraints a e assumed to be $g_{i}, \cdots g_{p},(p \leqslant r)$. This relationship can be extended to include all constrairts by defining the coefficieni u_{i} to be zero if $g_{i}\left(x^{*}\right)>0$.

The objective function is shown by concentric circles, and the constrained minimum is clearly at the point (1,1). All feasible directions at this point are obtained in the cone generated by the gradicnts - ∇g_{1} and $-\nabla g_{2}$, which are normal to the constraint boundaries.

FIGURE 12.11. Nonlinear Program Illustrating the Use of a Cone ${ }^{4}$

If this is done, the product $u s_{1}\left(x^{*}\right)$ is zero for all i. Eq. $12-19$ is the form in which the Kuhn-Tucker conditions usually are stated.

If a minimization problem with inequaliky constraints is a convex programming problem whose constraint set has a nonempty interior, the Kuhn-Tucker conditions are both necessary and sufficient for a point x to be a constrained minimum (Ref. 15).

Most existing nonlinear programming methods can be classified either as methods of fessible direction (such as Zoutendijk's procedure and Rosen's gradient projection method) or as penalty function techniques (such as the Fiacco-McCormick method).

12-3.5 METHODS OF FEASIBLE DIRECTIONS

Methods of feasible directions use the same general approach as the techniques of unconstrained minimization, but they are constructed to deal with inequality constraints. The idea is to pick a starting point that satisfies the constraints, and then to find a direction along which a small move violates no constraint and, at the same time, improves the objective function. We then move some distance in the selected direction, obtaining a new and better point, and repeat the procedure until we reach a point from which the objective function cannot be improved without vic lating at least one constraint. In general, such a point is a constrained local minimum of the problem, not necessarily a global minimum for the entire region of interest.

A direction along which a small move can be made without violating any constraints is called a feasible direction, while a direction which is feasible and at the same time improves the objective function is called a usable, feasible direction. Since there are many ways of choosing such directions, there are many different methods-of-feasible-directions.

An iterative procedure of this type is illustrated in Fig. 12-12. The starting point is X_{0}, and the usable, feasible direction chosen is

$$
\begin{equation*}
s_{0}=-\nabla f\left(x_{0}\right) \tag{12-20}
\end{equation*}
$$

The procedure is to choose the distance moved along s_{0} so as to minimize f, and the first improved point is x_{1}. Here, a problem
mises: proceeding in the negntive gradient ciirection at x_{1} would violate the constraints. There are many feasible directions in which we could move from x_{1}; any direction pointing into tine constraint set or along a constraint boundary would do. The "best" direction we can choose, however, is that feasible direction along which $f\left(x_{1}\right)$ decresses most rapidly, i.e., along which $-s_{1}^{T} \nabla f\left(x_{1}\right)$ is minimized. This is the feasii se direction that makes the smallest angle with $-\nabla f\left(x_{1}\right)$, and is the projection of $-\nabla f\left(x_{1}\right)$ on the constraint boundary.

The farthest we can move along s_{1} without crossing the constraint boundary is to the point x_{2}. Repeating the smallest angle procedure leads us to x_{3} with negative gradient $-\nabla f\left(x_{3}\right)$. At this point there is no usable feasible direction, since no feasible direction at x_{3} makes an angle of less than 90 deg with $-\nabla f\left(x_{3}\right)$. In this case, x_{3} happens to be at the global minimum of $f(x)$ over the constraint set.

The global minimum is not, however, always reached by this procedure. In this example, the same procedure, starting with y_{0} in Fig. 12-12, leads to a local minimum at the point a, which is distinct from the global minimum at x_{3}. This example illustrates the difficulties such procedure may encounter with local optima. These difficulties are common to all methods, and one can be sure of avoiding them only for a convex programming problem.

12-3.5.1 Zoutendijk's Procedure
Consider tive problem of minimizing $f(x)$, subject to the inequality constraints $g_{1}(x)>0$; $i=1, \cdots, m$. If a starting point x_{0} that satisfies the constraints is assumed, the problem is to choose a vector s which is both usable and feasible. Let I be a set of indices i, for which $g_{i}\left(x_{0}\right)=0$. For all feasible vectors s, a small move along the vector from x_{0} makes no binding constraint negative; i.e., for all i in the set I,

$$
\begin{equation*}
\left.\frac{d}{d \alpha}\left[g_{i}\left(x_{0}+\alpha s\right)\right]\right|_{\alpha=0}=\nabla g_{i}^{T}\left(x_{0}\right) s \geqslant 0 \tag{12-21}
\end{equation*}
$$

where α is the scalar parameter that determines how iar along s one might go. A usable,

AMCP 706-197

desired global minimim is at \bar{x}_{3}.
Feasible Directions ${ }^{4}$ Wition With Usable,
feasible vector has the additional property

$$
\begin{equation*}
\left.\frac{d}{d \alpha}\left[f\left(x_{0}+\alpha s\right)\right]\right|_{\alpha=0}=\nabla f^{T}\left(x_{0}\right) s<0 \tag{12-22}
\end{equation*}
$$

Therefore, the function initially decreases along such a vector

In searching for a "best" vector s along Which to move, we could chooctor s along vector that minimizes ∇f^{T} choose the feasible some of the binding constraints. However, if ar_{1} this could lead to the diaints were nonlineFig'. 12-13. Here, the feasiblifficulty shown in minimizes $\nabla f^{T}\left(x_{0}\right) s$ is the direction s_{0} that $-7 f\left(x_{0}\right)$ on the tangent plane projection of starting point x_{0}. Since the plane through the is curved, movement along constraint surface distance violates the constraint for any finite
ery move must be made to come back inside due constraint set. Repetitions of this procedure lead to inefficient zig-zagging. Therefore, locally "best" zagging, it is wise to choose a from the boundariection that moves away straints as it decreas of the nonlinear conAn algorithm using Z objective function. finding procedure is givintendijk's direction 5 is almost the same as in Table 12-2. Step case. It is still desirable to the unconstrained tive function along the vector , buize the objecconstraint may be violated s, but now no quadratic interpolation prod. The cubic or 12-1, modified to account for of Table may be used to compute α_{1}. for constraints, grams, Zoutendijk's method For convex proglobal minimum (Ref. 12).

AMCP 706-197

The contours of this function to the right of $x_{s}=3$ are circular but to the left they are elongated ellipses, showing the same bunching effect as before. This effect gets worse as k increases.

A gradual approach is more practical. Rather than solve only one unconstrained problem, we solve a sequence of such problems, each one bringing us closer to the final solution. For example, we can solve the problem with a small value of k. Then, using that solution as a starting point, choose a larger value of k and re-solve the problem. Repeat the procedure several times. In general, the sequence of unconstrained minima approaches the solution of the original constrained problem.

When the penalty function ϕ_{1} is used, intermediate solutions usually violate the constraints. Thus, the method approaches the constrained minimum from outside the constraint set. In many cases, this may be unsatisfactory. If small violations of the constraints are not permitted, intermediate solutions often cannot be used. The method is inefficient if the objective or constraint functions are ill-behaved exterior to the constraint set. Moreover, the approach cannot be used at all when any of these functions is not defined outside of the constraint set.

12-3.6.2 The Fiacco-McCormick Method

The Fiacco-McCormick method avoids the difficulties we just described by approaching the optimum from inside the constraint set (Refs. 17 and 18). To use this method, we first define the function

$$
\begin{equation*}
\Psi(x, r)=f(x)+r \sum_{i=1}^{m} \frac{1}{g_{i}(x)} \tag{12-26}
\end{equation*}
$$

where $r>0$. Let $r_{1} \rightarrow 0$ and choose x_{0} inside the constraint set. In the problem of minimizing $\Psi\left(x, r_{1}\right)$ starting frowa x_{0} and subject to no constraints, a minimun must exist inside the constraint set, since $\Psi\left(x, r_{1}\right) \rightarrow \infty$ on the boundary of this set (because some $g_{1}(x)=0$). Thus, the path of steepest descent leading from the point x_{0} (a path on which $\Psi\left(x, r_{2}\right)$ is sirictly decreasing) cannot penetrate the boundary of the constraint set. The minimiz-
ing point depends, of course, on the choice of r_{1}, and is denoted by $x\left(r_{1}\right)$. By this reasoning, $\mathbf{x}\left(r_{1}\right)$ will always be inside the constraint set.

If this minimization process is repeated for a sequence of values $r_{1}>r_{2}>\cdots r_{k}>0$, each minimizing point $x\left(r_{i}\right)$ also will be strictly inside the constraint set. Furthermore, as the value of r is reduced, the influence of the term which "penalizes" closeness to the constraint boundaries (the last term in Eq. 12-26) also is reduced and, in minimizing $\Psi(\mathbf{x}, r)$, more effort is concentrated on reducing the $f(x)$ term. Thus, the sequence of points $\mathbf{x}\left(r_{1}\right), \mathbf{x}\left(r_{2}\right), \cdots$ can come as close as necessary to the boundary of the constraint set. We would expect that as r approaches zero, the minimizing point $x(r)$ approaches the solution of the original problem of minimizing $f(\mathbf{x})$ subject to the constraints $g_{i} \geqslant 0$.

This method is particularly attractive in dealing with problems that have markedly nonlinear constraints, since it approaches the solution value from inside the constraint set. Motion along the boundaries of this set, which can be very cumbersome when the boundaries have large curvature, is completely avoided.

Fiacco and McCormick have shown that all the previous conjectures are true under certain conditions (see Table 12-2). Condition 7 is not implied by conditions 5 and 6 , but only small additional requirements on f and g_{i} are needed for it to hold (Ref. 16).

The Fiacco-McCormick procedure is given in Table 12-2. Step 2 may be accomplished by any of the unconstrained minimization procedures in this paragraph. In Step 3, r ought to be reduced by dividing each time by the same factor.

12-4 DYNAMIC PROGRAMMING

Dynamic programming is a general approach for solving a sequential decision process. Optimization is merely one kind of sequential decision process. This topic is not grasped easily from a short exposition, nor is it often practical for reliability problems, except when the problems can as easily be solved another way. Therefore, several references (Rofs. 19-22, 34) are gir en for further study, should the need arise.

Dynamic programming suffers from a major drawback-dimensionality. Problems with two or three state variables may be solved with increasing difficulty; and solution with more than three state variables is very difficult. This is because the functions $t_{i}(h)$, where h is the state vector of dimension k, must be tabulatod over a k-dimensional grid. If each dimension has 10 subdivisions, this requires the storage of 10^{k} numbers, which generally exceeds the fast memory space of most computers for $k>4$. Any increase in k is then quite difficult and can be accomplished only by trading memory space for computation time.

12-5 LUUSJAAKOLA METHOD

Luus and Jaakola developed a very simple method for optimization by direct-search and interval-reduction, Refs. 35 and 36. It is extremely simple to program, evaluates no derivatives, does not invert any matrices and can handle inequality constraints. Equality constraints are presumed to have been eliminated by usual methods.

For integer pzoblerns, e.g., parallel redundancy, Luus has extended the method, again in a very simple way (both programming and conceptually), see Ref. 36. Especially for the novice, but even for the high-powered theorists, this method has a great deal of appeal and utility. Ref. 36 is reproduced as Appendix A.

12-6 APPLICATIONS

It is difficult to find good nontrivial applications of complicated reliability optimization in the literature. Generally, in the literature, the analyst has to make too many unrealistic assumptions, or picks a problem no one in practice is really going to care about. For example, cost and weight are usually major real constraints; but there is not a continuum of equipments available with reliability tabulated as functions of cost and weight. Solving for optimum parallel redundancy in the presence of constraints is another favorite problem. But rarely are there more than a few redundant units; so the calculations cculd easily be carried out for all feasible combinstions.

One ought to be concemed with the region around the optimum point. If it is very flat, then it makes little difference where, in the flat region, one chooses a solution. There are usually many important variables, mostly qualitative, that are left out of the formal analysis. These may well determine where in the flat region one chooses the solution.

If there are a great many independent variables, it is difficult to visualize the "space" in which the problem is to be solved. The ramifications of assumptions and solutions are difficult to grasp. Therefore, most big problems ought to be reduced to a series of little ones whose meaning can be comprehended. If necessary, one can go back after the first trial solutions and modify the way the little problems were formulated.

Perhaps the biggest difficulty of all with optimizing a very large problem is that when it is finished, people tend to be extremely pleased and impressed. They tend to believe that they now know the answer to some realworld problem. But they don't. What they do know is the answer to a mathematical problem which contains gross approximations (to be tractable) and which was solved with guessed-at data. Since "no one" can understand the whole problem at once, there is a tendency to grasp the computerized solution like a drowning man grasping at straws.

Obviously, some very complicated problems have been solved by optimization techniques. These tend to be problems where plant process operation is quite well known, but where the magnitude of the calculation is just too much. The models themselves tend to be rather simple in concept; their complexity comes from their scope.

Some journal articles which apply optimization techniques are Refs. 22-33; Ref. 33 is a relatively new approach. Anyone who wishes to apnly optimization techniques to complicated reliability engineering problems ought to find professional assistance from people who aro skilled in using the available computer programs. To begin from scratch is usually to waste inordinate amounts of time and money, except that the Luus-Jaakola method (par. 12-5) can be used by almost anyone-conceptually and practically it's so simple.

REFERENCES

1. S. I. Gass, Linear Programming: Methods and Applications, McGrawr-Hill Book Co., Inc., N.Y., 1958.
2. G. D. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, N.J., 1963.
3. E. B. Hildebrand, Methods of Applied Mathematics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1952.
4. L. S. Lasdon and A. D. Warren, "Mathematical Programming for Optimal Design", Electro-Technology, 55-70 (November 1967).
5. H. Curry, "Methods of Steepest Descent for Non-Linear Minimization Problems", Quart. Appl. Math. No. 2, 258-61 (1954).
6. "Function Minimization by Conjugate Gradients", Brit. Computer J., 7, 149-54 (1964).
7. R. Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for Minimization", Brit. Computer J., 6, 163-68 (1963).
8. M. J. D. Powell, "An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating Derivatives", Brit. Computer J., 7, 155-62 (1964).
9. M. J. Box, "A Comparison of Several Current Optimization Methods and the Use of Transformations in Constrained Problems", Brit. Computer J., 9, 67-68 (1966).
10. H. H. Rosenbrock, "An Automatic Method for Finding the Greatest or Least Value of a Eunction", Brit. Computer J., 3, 175 (1960).
11. C. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley Publishing Co., Reading, Mass., 1964.
12. G. Zoutendijk, Methods of Feasible Directions, American Elsevier Iublishing Co., Inc., N.Y., 1960.
13. R. Fox and K. Wilmert, "Optimum Design of Curve-Generating Linkages with Inequality Constraints", Trans. ASME, J. Engineering, for Industry (February 1967).
14. R. Fox and L. Schmit, "Adyances in the Integrated Approach to Structural

Synthesis", Spacecraft and Rockets, 3, No. 6, 858 (June 1966).
15. H. W. Kuhn and A. W. Tucker, "Nonlinear Programming", Proc. Second Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, Calif., 1950, pp. 481-92.
16. J. B. Rosen, "The Gradient Projection Method for Nonlinear Programming. Part I - Linear Constraints", J. Soc. Industrial and Applied Mathematics, No. 8, 181-217 (1960).
17A. A. V. Fiacco and G. P. McCormick, "The Sequential Unconstrained Minimization Technique for Nonlmear Programming, A Primal Dual Method", Management Science, 10, No. 2, 360-66 (1964).

17B. A. V. Fiacco and G. P. McCormick, "Computationai Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming", Management Science, 10, 601-17 (July 1964).
17C. A. V. Fiacco and G. P. McCormick, "Extension of SUMT for Nonlinear Programming: Equality Constraints and Extrapolation", Management Science, 12, No. 11, 816-29 (July 1966).
18A. A. V. Fiacco and G. P. McCormick, Programming Under Nonlinear Constraints by Unconstrained Minimization. A Primal-Dual Method, RAC Tp-96, The Research Analysis Corp., Bethesda, Md., September 1963.
18B. A. V. Fiacco and G. P. McCormick, Nonlinear Programming Sequential Unconstrained Minimization Techniques, Wiley, N.Y., 1968.
19. R. Bellman, Adaptive Control Processes, Princeton University Press, Princeton, N.J., 1961.
20. R. E. Bellman, Dynamic Programming Princeton University Press, Princeton, N.J., 1957.
21. R. E. Bellman, "Dynamic Programming and Language Multipliex", Proceedings National Academy of Sciences, 42, 767-69 (1956).
22. F. A. Tillman, C. L. Huang, L. T. Fan, K. C. Lai, "Optimal Reliability of a Complex System", IEEE Transactions
on Reliability, R-19, No. 3 (August 1970).
23. D. E. Fyfee, W. W. Hines, N. K. Lee, "System Reliability Allocation and a Computational Algorithm", IEEE Transactions on Reliability, R-17, No. 2 (June 1968).
24. R. M. Burton, G. T. Howard, "Optimal Design for System Reliability and Maintainability", IEEE Transactions on Reliability, R-20, No. 2 (May 1971).
25. A. S. Cici, V. O. Muglia, "Computer Reliability Optimization System", IEEE Transactions on Reliability, R-20, 110-116 (August 1971).
26. K. B. Misra, "A Method of Solving Redundancy Optimization Problems", IEEE Transactions on Reliability, R-20, 117-120 (August 1971).
27. B. K. Lambert, A. G. Walvekar, J. P. Hirmas, "Optimal Redundancy and Availability Allocation in Multistage Systems", IEEE Transactions on Reliability, R-20, 182-185 (August 1971).
28. J. Sharma, K. V. Venkateswaran, "A Direct Method for Maximizing the System Reliability", IEEE Transactions on Reliability, R-20, 256-259 (November 1971).
29. K. B. Misra, "A Simple Approach for Constrained Redundancy Optimization

Problems", IEEE Transactions on Re:iability, R-21, 30-34 (February 1972).
30. K. B. Misra, "Reliability Optimization of a Series-Parallel System", IEEE Transactions on Reliability, R-21, 230-238 (November 197E).
31. K. Inoue, S. L. Gandhi, E. J. Henley, "Optimal Reliability Design of Process Systems", IEEE Transactions on Reliability, R-23 (April 1974).
32. T. Nakagawa, S. Osaki, "Optimum Preventive Maintenance Policies for a 2 Unit Redundant System", IEEE Transact'ons on Reliability, R-23 (June 1974).
33. 13. P. Lientz, "Allocation of Componenis to Maximiz: Reliability Using An Implicit Method", IEEE Transactions on Reliability, R-23 (June 1974).
34. DA Pam 70-5, Mathematics of Military Action, Operations and Systems.
35. R. Luus and T. H. I. Jaakola, "Optimization by Direct Search and Systematic Reduction of the Size of Search Region", AlChE Journal, 19, 760-766 (july 1973).
36. Rein Luus, "Optimization of System Reliability by a New Nonlinear Integer Programming Procedure", IEEE Transactions on Reliability, R-24, 14-16 (April 1975).

Optimization of System Reliability by a New Nonlinear Integer Programming Procedure ${ }^{36}$

Abstract

Alvaref-This papet perents a mefol procedure of solvies nomineas integer programming probicms. It fiads, first, a psendo-solution to the probiem, a if the varisbies were continuous. Then it wses disect search in the meighbouthood of the promdo-sonimion to find the optimann. The effectivenest of the method is shown with a 15 -varinke problem, which requires about 1 dsy's FORTRAN progrenming effort and 8 seconds of computer time for its solution on an JBM 370/165 digity computer.

Reader Aidr:
Puppoce: Widen state-ol-the art.
Special math needed for explanations: None
Special math needed for results: Nome
Revules useful to: Design and stiabitity engineers, progranmers.

INTRODUCTION

NCREASING reliability by the introduction of redundancy is well known. However, the problem of how to optimize the reliability through the selection of redundancy has not yet been edequately solved. Tillman and Littschiwager [1] presented an integer programming formula', on for the solution of ieliability problems. The method requires transfornation of the objective function and introduction of auxiliary variables. Mista [2] discuses the overall applicibility of integer programing approach to solving reliability problems; later Mista [3] introduces the use of Lagrange multipliers and the Maximum principle to solve reliability optimization problems. Sharma and Venkateswaran [4] presented a simpler method with no assurance of obtaining the true optumum. Banerjee and Rajamani [5] use the Lagrange multiplier approach to solve the reliability problen to yield optimum or near optimum results. Misra and Sharma [6] classified the methods into two groups, one which includes methods which require simple formulation and yield approximate results and the other which includes methods which are complicated but yield an exact in. teger solution to the probiem. These authurs then provide a geometric programming formulation for the reliability problem which gives an approximate answer.

The purpose of this paper is to present a method which is easy to formulate and which gives an optimum for the rellability optimization problem. Although there is no assurance of obtaining the global optimum, in practical probiems the method will come very close to finding the global optimuin.

PROBLEM FORMULATION
Maximize a nonlinear function of n variables denuted by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

subject to the "onstraints

$$
\begin{gather*}
g_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant b_{r} i=1,2, \ldots, m \tag{1}\\
x_{r} i=1,2 \ldots, n \text { must be positive integers } \tag{2}
\end{gather*}
$$

The constraint functions g_{f} need not be linear and the number of inequality constraints m need not be less than n. A procedure invoiving three steps is propused.

SOLUTION TO THE GENERAL PROBLEM

Step 1: Solution to the Pseudo-Problem
Relax the condition of requiring each x_{i} to be integer and solve the maximization problem as if the variables were continuous. Only an approximate solution is necessary to this pseudo-problem.

Step 2: Filling in the slack by stecimest ascent
Take the values of x_{i} obtained in Step 1 and convert them to integers by truncation (toward zero) so that the inequality constraints (1) are satisfied.

There may now be adequate slack in (1) to allow an increase in at least one of the x. Therefore, attempt to increment each x_{i} by 1 . check to see if (1) is satisfied, and increment only the x_{1} which gives the greatest contribution to the maximization of f. Continue this filling of sack until no x_{i} can be incremented without vilating at least one of the constraints.

Step 3: Systematic exchange of variables

Carry out $n(n-1)$ tests whereby one variable is incremented by 1 and the others are decremented by 1 in turn For example. suppose x_{1} is incremented to $x_{1}+1$. Now decrement x_{2} to $x_{2}-1$ and check whether inequalities are satisfied. If so, then calculate the corresponding value of f and compare that value to the maximum f in Step 2. If the most recently calculated f is greater, then retain in the memory the fact that x_{1} incremented by I and x_{2}-decremented by I gives a better value. However, before making a change in this variable, continue through the entire cycle up to x_{n}. Then choose the set x_{f} which has given the greatest value for f. Perform the cycle by incrementing x_{2} and continue with x_{3}, x_{4}, etc. up to x_{n}. In total. there are thus a maximum of $n(n-1)$ tests to be done. The set giving the largest value of f is retained as the optimum.

[^5]TARLE 1

shatement	In	$c_{c o n}$	$\begin{gathered} \text { Woint } \\ \text { Wy } \end{gathered}$	Alocution (x_{1})	
				$\operatorname{sem} 1$	Smp 3
1	0.00	1.2	1.0	5.3	6
2	0.70	2.3	1.0	6.3	6
3	0.75	3.4	1.0	5.2	5
4	0.5	4.5	1.0	3.8	4
Systmm molubility				0.9979	0.9977
Syrmim ceat (56 max)				56.0	56.0
Syman mitit (30 max)				20.7	21.0

tanle 2
Relinblity, Coot and Wowht Factors for Exampio 2

$\begin{gathered} \text { Steve Number } \\ 1 \end{gathered}$	$\begin{aligned} & \text { Invinatioy } \\ & 7 \end{aligned}$	$\begin{gathered} \text { Coet } \\ 4 \end{gathered}$	$\begin{gathered} \text { Wright } \\ w_{i} \end{gathered}$	Alocatioa (x_{1})	
				Step 1	Smp 3
1	0.90	5	8	29	3
2	0.75	4	9	4.2	4
3	0.65	9	6	4.9	5
4	0.20	7	7	3.7	3
5	0.85	7	8	3.0	3
6	0.93	5	8	2.3	2
7	0.18	6	9	3.4	4
8	0.66	9	6	5.0	5
9	0.78	4	7	4.0	4
10	0.91	5	8	2.7	3
11	0.79	6	9	3.5	3
12	0.77	7	7	3.7	4
13	0.67	9	6	5.1	5
14	0.79	8	5	4.3	5
15	0.67	6	7	5.3	5
System reliebility				0.952	0.945
System cost (400 max)				386.0	389.0
System weight (414 max)				413.7	414.0

EXAMPLES

Since there is no assurance that the global optimum is reached, it is instructive to test this method by applying it to a class of reliabiitity problems which have been handled by other methods.

Example 1

The reliability proviem [6] maximizes the relability func. tion

$$
\begin{equation*}
f=\prod_{i \times i}^{4}\left(1-\left(1 \cdot r_{i}\right)^{x_{i}}\right. \tag{3}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
& \sum_{i=1}^{4} r_{i} x_{i}<56 \\
& \sum_{i=1}^{4} w_{i} x_{i}<30 \tag{5}
\end{align*}
$$

(4)

There are 4 slages and the reliability, cost, and weight factors are given in Table 1 .

For Step 1 , it is eassiest to use the opumization methr \rfloor of Luus and Jaakola [7] ; see the Appendix for the simple algorithm. The initial value for each $x_{j}, i=1,2, \ldots, 4$ was chpoen as 2.0 , the initial region for the random numbers as 5.0 , the reuisition factor for the regions after each iteration was chooen to be 0.12 , and 100 iterations were specified. The algorithm for step 1 is given in the Appendix.

At the end of Step 1 the results are as shown in Table 1. These values of x_{l} were then truncated and Steps 2 and 3 were performed to yield the results shown in Table I. The answer is better than that obtained by Mista and Sharma [6].

The total computation time by the 3 -step procedure was 3 seconds on IBM 370/165 digital computer, during which the reliability function was evaluated 5384 times.
4) Example 2

To provide a more rigorous test of the proposed procedure, consider a 15 stage reliability problem where the constrints of (4) and (5) are 400 and 414 respectively; the relability, cost and weight factors are in Table 2.

Exactly the eane computational procedure as in Example 1 mas used. The results after Stepi 1 and 3 are given in Table 2. The iotal number of functica eraluations was 5362 and the computation time was 7.8 seconda.

DISCUSSION

The negligibie compulation time for the 15 stage reliabitity problem shows that the propoeed method is very usefil for solving relisbility problems where discrete units are specified. To emphasize that the recommended procedure does not involve exhaustive enumeration requires cnly a vely simple calcuhation. Suppose we look at the possibility of having either 1,2 , 3,4 or 5 units at each of the 15 stapes. To evaluate all possibilities wouid require $5^{15}=3 \times 10^{10}$ calculations, which is an innense, completely impractical number.

ACKNOWLEDGMENTS

This work was perforred with the assistance of a grant from the National Research Council of Canada, A-3515. Computations were performed with the facilities of the University of Toronto Computer Centre.

REFERENCES

[1] F.A. Tulman and J.M Liticchwaeer, "Integer Programming FormuLation of Constrained Relinility Froblems", Manegement Science. Vol. 13, pp. 287.899, July 1967.
[2] K.B. Missa, "A Method of Solving Redundancy Optimization Problems", IEEE Trens Rel, Vol. R-20, pp. 117-120, August 1971.
[3] X.8. Misra, "Relisblity Optimization of a Series-Farallel System". IEEE Tmens ReL, Vcl. R-21, pp. 230-238, November 1972.
[4] J. Charma and X.V. Venkentewaran, "A Direct Method for Meximizing the System Relisbiltty", JEEE Trens ReL, Vol. R-20, pp. 256-259, November 1971.
(5) S.K. Baneriec and K. Rajemani, "Optimization of System Relisbiity Using a Parametric Approech", IEEE Trens Rel, Vod. R-22. pp. 35-39, April 1973.
[6] K.B. Miza and J. Sharma, "A New Geometric Programming Formu-Lation for a Reliability Problem", Int. J. Coitrol. Vot. 18, pp. 497. 503, Seplember 1973.
[7] R. Laus and T.H.L. Jankola, "Optimization by Direct Smarch and Systmeatic Reduction of the Siee of Smuch Region". AICNE J., Vol. 19, Mp. 760-766, July 1973.

APPENDIX
Alsorithm for Direct Random Search and Interval Reduction
[Equality constraints are presumied to have been eliminated] [7]

Nolation:

x the set of x_{f} which are the unknowns
$x *(j)$ the center value of x at iteration j which corresponds to the best value of x at iteration $j-1$.
$f(1)$ the set of r_{i} which are the ranges for direct search at iteration $;$; the direct search for x_{j} is over the range.

$$
x_{i}^{(n)}-0.5 r_{i}^{(n)}<x_{i}<x_{i}^{(n)}+0.5 r_{i}^{(1)}
$$

y a preudo zandom number, uniform over the range -0.5 to 0.5
n total number of iterations, e.g. $n=100$
p number of random trials for each iteration, e.g. $p=100$
E the small number by which the range is reduced for each iteration, e.g. $\epsilon=0.02$

Alsorithm:

0. Choose initial values $\left.x^{*(}\right)$ and $r^{(0)}$, set $j=1$.
1. Calculate p sets $x_{i}()=x_{i}{ }^{(j)}+y r_{i}() ; y$ is a new pseudo random number for each calculation.
2. Test tise inequality constraints, retain only those $x^{(/)}$that satisfy the constraints. Calculate the objective function for each retained $x(0)$.
3. Find the $x^{(j)}$ which maximizes the objective function. Call it $x^{*(U)}$, the center value for next iteration. If the maximum number of iterations is reached, stop.
4. Calculate $r^{(1+1)}=\left(1-\epsilon_{i}\right)^{(j)}$. Increment j and go to Step 1.

13-1 INTRODUCTION

Modern computers are powerful tools that can be used by the engineer to compute the reliability characteristics of complex systems. A variety of mathematical methods have been developed which can be applied to solving many different types of reliability problems. Programs are available for computing parameters such as reliability, availability, and MTF for repairable and unrepairable systems.

Some of the programs can handle very large systems of hundreds of elementary units for which failure and repair information must be projided. Other programs permit costeffective systems to be designed by computing optimum allocations of redundant units which obey constraints on weight, size, cost, and other factors. Simulation techniques have been developed for systems that are too complex to be evaluated by other methods.

A large number of computer programs have been developed for predicting the reliability parameters of systems. These programs have been written by many companies for a number of governmental agencies. Some of the programs were developed for a specific system, and some are more general and can be applied to many system configurations.

13-2 MATHEMATICA'S AUTOMATED RELIABILITY AND SAFETY EVALUATION PROGRAM (MARSEP)

MATHEMATICA, Inc., developed a program that automates the evaluation of the reliability and unreliability of electromechanical systems (Ref. 1). MATHEMATICA'S AUTOMATED RELIABILITY AND SAFETY EVALUATION PROGRAM (MARSEP), was originally developed for the SANDIA Corporation for use in evaluating nuclear weapon systems. It can be used for both reliability and unreliability calculations. The unreliability calculations are used in system safety analyses where unreliability terms of very small magnitude may be very important.

MARSEP provides a means of computing an exhaustive Boolean expression that includes all possible success and failure events.

MARSEP has been programmed for computers at the Picatinny Arsenal and the Harry Diamond Laboratories.

MARSEP accepts as input a description of the system and a definition of system success. The computer determines which combinations of component events are required for system operation and system failure.

The system description contains a list of individual system components and their operating and failure modes. A set of two events, success and failure, must be defined for each component. Failure of any individual component does not cause failure in any other component.

A simple circuit consisting of a battery, switch, relay, light, and squib is shown in Fig. 13-1. The circuit description includes all terminals and wires, including the ground terminal. In using MARSEP, it is assumed that possible failure in connections and wire leads are important and must be considered.

A model must be prepared from the circuit diagram. The MARSEP model is a block diagram whose elements represent the individual system components, their possible failure modes, and operating conditions. Some of the symbols used to prepare a MARSEP model are shown in Table 13-1. The MARSEP model for the sample circuit is shown in Fig. 13-2.

MARSEP provides a modeling language that is used to describe the elements in the MARSEP model and their interconrections. Each element in the MARSEP model must be given a name for use in the system description part of the input data. For example, in Fig. 13-2, the battery is defined as BATTRY, and the short mode of failure is called SHORT.

A set of symbols is also required, each symbol representing the probability of occurrence of the usual (most likely) event(s) for each element in the MARSEP model. The prefix P is used to identify events which correspond to a component functioning successfully, or transmitting a signal, or both. The prefix Q identifies events associated with a component failing to function, or opening the circuit, or both. Both types of symbols are referred to as P Names. Table $13-2$ shows the

TABLE 13.1 MARSEP MODELING SYMBOLS ${ }^{\text { }}$

MODELING BOXES. with eloctriced interpretations

BASIC MODELING. Pasces signal from input (1) to output (2). Has success and failure events associated with it.

SIGNAL SOURCE. This box produces a signal at $\{2$). It can be affected by shorts to ground and connections to ground.

AND BOXES. These boxes usually need both a usual input (1) and a second input (2) in order to provide an output at (3). There is a second event set defined for the situation when the input at (2) is missing.

SHORT-TO-GROUND. If this box fails the circuit is shorted to ground.

FUSE. This box indicates a point in the circuir which should
 open when a signal passes through it.

BOX OR TERMINAL MODIFIERS

QUALITY SENSITIVE. Indicates that the box on which this appears is sensitive to the type of input received. A different event set is defined for each type of input. Signal types are defined at their source.

ENVIRONMENT. An externally determined input that provides for conditional event sets in the model.

MODELING DIODE. Indicates that a high resistance to ground exists within the box to which it is attached. This is interpretod as preventing a ground connection from draining a signal source.

TABLE $13-2$

ASSIGNMENT OF P NAMES TO SIMPLE CIRCUIT MODEL ${ }^{1}$

ELEMENT NAME	P NAME	EVENT
BATTRY	PVOLT	battery delivers preper voltage
SHORT	PSTG	short to ground does not occur at this point
START	PCLOS	switch closes when pressure applied
	Q6FF	switch remains open before pressure is applied
COIL.	PPICK	symbolizes the event that coil picks contact when proper input is applied
CONTCT	PCONT	contacts provide continuity when picked
	OERLY	contacts remain open before relay is picked
LIGHT	PLITE	light burns when proper voltage applied
FUSE	PGPEN	squib open when proper input applied
SQUIB	PBLDW	squib fires when proper voltage is applied
WIRE	PGGOD	wire carries signal applied

TABLE 13-3
MARSEP MODELING LANGUAGE ${ }^{1}$

A2 (P name)

This attribute states the probability that the given element works, given all proper inputs, is P name.

A3 (B name, P name)

Denotes the element receives an enabling input from element B name. In the absence of that input, the element will give an output with probability P name. (The probability of nonoperation given a proper enabling input is given by A2.)

A4 (B name 1 \qquad B name n)

Denotes the element has enabling ouputs to the elements B name 1 . B name n.

A14 (E name, P name)

E name is the name of some environment. It is any item such as HEAT, PRES 6, RAD 2, etc., that is listed as an environment. P name is the probability - that the element functions in the absence of named environment.

A6 (T name, A name, N name, P name*, N name, P name*...* N name P name)
Thus, A6 is followed by a compound list:
T name (or V name) is the name of an input terminal to the element which is dependent upon the value of the input signal (quality input).

A name is either A10 if the input is voltage-sensitive, one of the attributes, or A50 through A90 for nonvoltage sensitive sources. The A number may be left out of subsets after the first subset. In this case it will be interpreted to be the same as the last one listed.
N name is either a value of the input signal at the terminal in question (i.e., an integer) or an item with head N which will symbolically indicate a signal level.
P name is the probability of operation given N name. The probability of nonoperation given the usual value of N name is given in A2.

Only one A6 is allowed per element.

TABLE 133 (Cont'd)

MARSEP MODELING LANGUAGE

where:
P name 1 is probability that box operates given E name 1 is present.,
P name 2 is similar to P name 1 .
P name 3 is probability of operation given E name 1 and E name 2 are absent.

A7 (T name
.T name)
Indicates that the named terminals will not propagate a ground.

TABLE 13-4												
EHAND	SET	OFF										
	(Complete Expression)											
PVOLT	* PSTG	*	POPEN	*		- QOFF	*	PPICK	*	PCONT		PGOOD
	* Plite	*	PBLOW	+		PVOLT		PSTAG	*	POPEN		COTF
	* 'PPICK	*	-oErly			PGOOD		PLITE	*	PBLOW		
						(After	Theo F					
						Second	ressi					
EHAND	SET	ON										
'PVOLT	+ 'PSTAG	(Complete Expression)										'PCONT
	+ PPGOOD	+	'PLITE			'PBLOW						
'PVOLT	(After Editing and Set Theory)											
	+ 'PSTG	+	'POPEN		+	'PCLOS	+	'PPICK	+	'PCONT	+	'PGOOD
	+ 'PLITE	+	'PBLOW									

second expression is for system success when the switch is closed by the hand.

13-3 GENERAL EFFECTIVENESS METHODOLOGY (GEM)

The GEM system was developed by the Naval Applied Sciences Laboratory in order to provide engineers with a user oriented reliability evaluation technique (Refs. 2-5). The user interacts with GEM by means of a language especially developed for use in reliability problems.

The GEM system consists of the GEM language, a System Library, a Formula Library, and a program system containing a processor and update programs.

The GEM processor is designed to accept descriptions of reliability block diagrams together with associated data and to calculate one or more reliability measures. The description and computed results can be stored in the System Library which can later be retrieved, modified, and re-evaluated.

The Formula Library contains a set of mathematical subroutines for computing various reliability parameters, relieving the engineer of the burden of constructing a new program for each new system evaluation.

The GEM program system was developed using a modular approach that facilitates the modification of existing programs and addrtion of new routines as needed. The general organization of the GEM program system is shown in Fig. 13-3.

GEM can be used to support systems development, trade-off analyses, evaluation, and optimization. The processor is structured to evaluate variables such as reliability with or without repair, instantaneous availability, and interval reliability for systems that include such hardware interdependencies as bridge networks, shared elements, standby equipment, and environmental strategies and priorities including repairmen and spare parts pools (see Fig. 13-4).

13-3.1 STRUCTURE OF GEM

The engineer using GEM provides a system description consisting of a reliability model; failure, repair, and replacement rates;
the up-state rules; replacement and repar strategies; and support constrain's for the system. The support constraints are the number of repairmen and their specific assignment, the number of spares pools, the spares in each pool and identification of the items that share each pool, allocation strategies to be used in cases of conflicting demands on repairmen and/or spares, and identification of items to be held in standby. The user also specifies which reliability parameters are to be calculated by the GEM processor.

The system description is written in the GEM System Definition Language, and the parameters to be calculated are stated in the GEM Command Language (Ref. 4). The Command Language also is used to make modifications to previcusly defined system descriptions.

The System Library is a magnetic tape containing system descriptions, calculation requests, and calculated results for previously evaluated systems (Ref. 5). The Formula Li brary is a magnetic tape containing the formulas and computer routines for calculating the reliability parameters that are part of the GEM system (Ref. 5).

The GEM processor refers to the System Library (if the system has been previously evaluated) and the Formula Library, while it first translates the system description and calculation requests into a mathematical model for computing the parameters requested, then performs the calculations, and finally, prints the results.

Error-checking routines are built into the processor to detect omissions, inconsistencies in the description or data, wrong parameters, impossible values of parameters, and other errors. When errors are detected, the processor prints error messages that define the nature of the errors and their location.

The GEM system also contains a set of Library Update Programs for generating, mainiaining, and updating the System Library and the Formula Library.

The GEM system provides a printed output in the form of a tabulation of computed results or a plot output. The user's original system description is presented as part of the output.

FIGURE 13.3. GEM Program System Organization ${ }^{4}$

The GEM program was implemented on a CDC 6600 computer located at the Courant Institute of New York University. Minimum requirements for running the program are 135,000 words of memory for most problems and 300,000 words for calculating reliability with repair and availability of systems with nonexponential failure and/or repair distributions. The GEM processor was designed using the Chippewa Operating System.

13.3.2 THE GEM SYSTEM

The computer equipment configuration required by the GEM processor is:

1. CDC 6600
2. Five magnetic tape drives
3. Disc file
4. Card reader
5. Printer.

All possible GEM inputs and outputs are illustrated by the GEM flow diagram, Fig. 13.5. The GEM processor requires formula input and system definition input. Formula input takes one of the three following forms:

1. Previously created formula library tape.
2. A new formula library tape, created
from a set of cards, containing variables, formulas, and update commands.
3. A revised formula library tape created from a combination of the two preceding forms-i.e., a previously created formula library tape, plus a set of cards containing additional variables, formulas, update commands, etc., which would result in a revised formula library tape.

System definition input takes one of the three following forms:

1. A set of cards containing system definitions, evaluation verbs, and (if desired) modification verbs.
2. A previously created system library tape plus a set of cards contaning evaluation and modification verbs (and, if additional systems are required, a set of cards containing new system definitions).
3. A previously created print file tape (containing system definitions) plus a set of cards containing evaluation and modification verbs (and, if additional systems are required, a set of cards containing new system definitions).

Output consists of a printout sheet (printed output listings) and a magnetic tape (Print File).

FIGURE 13-4. Interrelation of GEM Environmental Vector Definitions and Ovarall System Effectiveness

FIGURE 13.5. GEM Input/Output Diagram ${ }^{5}$

There are three phases to GEM. During Phase 1, information is read (transferred) into the computer, error checked, and stored in files within the computer in a compact form. Phase 2 processing involves making the modifications indicated by the original modification commands. In Phase 3, the newly created system is used to generace a FORTRAN source program, to permit the calculation of the systems effectiveness measures. The FORTRAN program is compiled and executed, the answer tables are created, and, subsequently, the output (a printout of the evaluated systems and error messages and a print file tape) is generated.

13-3.3 THE GEM LANGUAGE

13-3.3.1 The System Definition Language

Some of the basic elements (vocabulary) of the System Definition Language are (Ref. 4):

1. Level Number
2. Duplicate Number
3. Item Name
4. Formula Name
5. Parameters
6. Environmental Vectors (E Vectors).

The Level of an item is its level of comprehensiveness or its position in a hierarchy that represents the manner in which the user views the system.

Tb : Duplicate number of an item states the number of identical items in a system and is used to avoid having to describe identical items more than once.

The item Name is used for identification and is arbitrarily chosen by the user. Names need not be unique except for items of the same level if they are not identical.

The Formula Name is either a statement of the relationship that items in a lower level bear to one another, or it identifies the name of a failure and/or repair distribution associated with a lowest leveli item.

The Parameters seria as either further clarification of the relationship stated in the formula or they give the parameters of the failure and/or repair distributions associated with the !owest level items.

Environmental Vectors serve two basic functions. They enable the user to describe complex configuration or upstate rules which cannot be stated in terms of series-parallel statements. They also enable one to specify constraints with respect to repairmen and/or spares as well as their deployment and the order of priority to be followed when there are not enough repairmen and/or spares for every item that is in a downstate.

13-3.3.2 Illustration of the System Definition Language

The concept used in describing a system configuration in GEM permits the connectivity of the items in a block diagram to be defined in stages (levels of comprehensiveness) so that more detail is stated at each level until the lowest level item is reached. In effect, the block diagram consists of a hierarchy of levels and, at each level, the appropriate relationship of the items just one level below is defined. To illustrate this procedure, consider the block diagram in Fig. 13.6.

The system in Fig. 13-6 is made up of two subsystems connected in series. The first subsystem consists of four identical items and the upstate rule is that at least two must be up (2-out-of-4:G). The second subsystem is a par-allel-series configuration. The breakup of a system in terms of its levels can be portrayed by a GEM diagram. For the example in Fig. 13.6 this would have the form shown in Fig. 13-7. The description of this system in the GEM Definition Language would be as in Table 13-5.

In Table 13.5, the entry in the Formula column designates that at the 01 level, the rule of combination for the two 02 level items (SBSYS1 and SBSYS2) is the statement that these items are connected in series (SER). It is not necessary to state the mathematical formula for a series connection, only its code. At the first 02 level, the Formula entry is PAR to designate that the four 03 level items are connected in parallel. The entry in the Parameter column, $M=2$, states that at least two of the 03 items must be up in order for the 02 item to be up. The entry of 4 in the Dup. column for item A states that there are four identical items, each called A, and the FENO entry in the Formula column states that the times to

AMCP 706-197

Level

01

FIGURE 13-6. Sample System for GEM Analysis ${ }^{4}$

FIGURE 13.7. GEM Diagram for Sample System ${ }^{4}$

TABLE $13-5$
SYSTEM DESCRIPTION IN GEM SYSTEM DEFINITION LANGUAGE"

Level	Dup.	Name	Formula	Parametors
01		SYSTM	SER	
02		SBYS1	PAR	$\mathrm{M}=2$
03	4	A	FENO	$\lambda=$
02		SBSYS2	PAR	$M=1$
03		AB	SER	
04		A	FLNO	$\mu=, a=$
04		B	FWNO	$n=, \beta=$
03		CDE	SER	
04		C	FGNO	$\sigma=, \beta=$
04		DE	PAR	$M=1$
05		D	FLNO	$\mu=, \sigma=$
05		E	FTNO	$\mu=, \sigma=$

TABLE 13-6
GEM SYSTEM DEFINITION LANGUAGE FORMULA SYMBOLS ${ }^{4}$

TABLE 13-7
FORMULAS ASSOCIATED WITH A SECTION4

FORMULA
 MEANING AND, REQUIREMENTS
 PARAMETERS

Formuias also permitted outside sections.

FENO	These formulas refer to pioces of equipment
FGNO *	with no regair or replacement. Those with
FLNO *	astericks after them cannet appear in a sec-
FTNO *	tion with repair or repiacement.

Formulas only permitted within sections.

FERE	Equipment with exponential failure and exponential repair. The repairman situation is described in the REPMEN E-vector.	RLAM XMU	Failure rate. Repair rate.
FESI	Equipment with exponential failure and instantaneous replacement. The spares pools are described in the SPARES E-vector.		
FESE	Equipment with exponential failure and exponential replacement. The repairman situation is described in the REPMEN E. vector and the spares pools in the SPARES Evector.	RLAM SLAM	Failure rate. Replacement rate.
SECT	The first formula of a section. Its dependence on its subsystems is described in its UPSTATES E-vector.	None.	
S	The formula of a group item within a section. Its dependanice on its subsystem and pieces of equipment is described in its UPSTATES E-vector.	None.	

GEM SYSTEM DEFINITION COD!NG FORM

FIGURE i3.8. GEM System Definition Language Coding Form ${ }^{4}$

The REPiACE command is a combination of the DELETE and ADD commands.

The ALTER command is used to change any one of the entries for an individual item, such as its parameters, name, resultant name, or level. Only the item specified is affected by the ALTER; its lower level items remain the same.

The VARY command is perhaps the most important one, because it gives the user the ability to make sensitivity analyses. It does this by allowing the user to vary the values of one or more parameters of items in the system description and see the effects of this on the value of the overall system answer. Thus, one can determine the sensitivity of the system Reliability with Repair to the failure rate and/or repair rate of an individual item or group of items appearing anywhere in the system description. The procedure followed in GEM is to compute the system answer for the requested variable for every value of the parameter specified in the VARY. Ref. 4 gives more specific examples of using GEM for a sample system; it includes block diagrams, GEM input, and GEM output.

13-4 OTHER PROGRAMS

Other computer programs for calculating various aspects of reliability are listed in Part Two, Design for Reliability, par. 4-5. In addition, most computer installations have statistical packages for performing routine estimat:ions, and simulation languages for performing Monte Carlo simulation. Few people can know all about all available programs. Specialists can assist in selecting a few from the available many, then help an engineer become familiar with those few. It is better to be able to use handily a fairly good program than to have only a remote knowledge of several excellent programs.

REFERENCES

1. MARSEP, Mathematica Associates.
2. C. Sontz, S. Seltzer, and P. Giardano, General Effectiveness Methodology, Operational Research Society of America, Durham, North Carolina, October 18, 1966.
3. The Generalized Effectiveness Methodology (GEM), Interim Report, U S Naval Applied Sciences Laboratory, Brooklyn, N.Y., 30 September 1966.
4. S. Orbach, The Generalized Effectiveness Methodology (GEM) Analysis Program, US Naval Applied Science Laboratory, Brooklyn, N.Y., 8 May 1968.
5. GEM Formula Library Reference Manual and GEM Maintenance Manual, CAI Report NY-6453-II-002-U, Prepared for U S Naval Applied Sciences Laboratory, Brooklyn, N.Y., under Contract No. NC0140-67-0350, April 1967.

INDEX

Active redundancy,
See: Redundancy
Availability, 6-20

Bad-as-old, 7-1
Bayes theorem (rule): $2-5$
s-Bias, 4-1
Binomial distribution, 2-10
Block diagrams, 6-32
engineering, 6-2
functional, 6-2
reliability, $6-21,6-24,6-29,13-1$

Cause-consequence chart, See: Block diagram
Central moment,
See: Moments
Chi-square distribution, 3-4
Coding redundancy, See: Redundancy
Common-cause failure (event),
See: Common-mode event
Common-mode event, $2-6$
Computer programs (system reliability), 13-1
GEM (General Effectiveness Methodology), 13.9

MARSEP (Mathematica's Automated Reliability and Safety Evaluation Program), 13-1
other, 13-20
s-Confidence, 4-2
s-Consistency, 4-1
Constrained optimization,
See: Optimization
Conyexity (optimization), 12-9
Convolution, 3-3
Correlation coefficient,
See: Linear-correlation coefficient
Covariance, 3-5

D

Decision redundancy, See: Redundancy Decreasing failure rate (DFR), 4-3
s-Dependent failures, 9-7
Distributions
continuous variables, 3-3
discrete variables, 2-10
for specific distributions,
See: the name of the distribution
Dynamic programming (optimization), 12-18

E

s-Efficiency, 4-1

Erlang distribution, 3-4
Estimation of parameters, 4-2
Estimators (properties of),
See: s-Efficiency, s-Consistency, s-Bias
Event, 2-1, 3-1
Exponential distribution, 3-4, 9-1

F

Failure rate, 3-4, 3-5
Fault tree,
See: Block diagram
Feasible directions method (optimization), $12-15$
Zoutendijk procedure, 12-15
Rosen's procedure, 12-17
Fourier transform,
See: Laplace transform
Functional block diagram,
See: Block diagram
interpolation, 12-2
steepest descent, 12-2
second order optimization, 12-4
conjugate directions, 12-5
Fletcher-Powell, $12-5$

Increasing failure rate (IFR), 4-3
s-Independence, 1-1, 2-5, 3-3
conditional, 2-5, 3-3

K

k-out-of- n
F-redundancy, See: Redundancy
G-redundancy,
See: Redundancy systems,
See: Redundancy
Kuhn-Tucker conditions (optimization), 12-11

Laplace-Stieltjes transform,
See: Laplace transform
Laplace transforms, 5-1
Linear-correlation coefficient, 3-5
Linear programming, 12-1
See also: Optimization
Lognormal distribution, 3-4
Luus-Jaakola method (oplimization), 12-19, A-1

M

Maintenance, See: Repair
Majority logic, See: Redundancy
Markov
chains, 5 -1
processes, 5-1

Maximization, See: Optimization
Mean square error, 4-1
Mean time between failures (MTBF), 6-21
Mean time to failure (MTF), 6-20
Minimization,
See: Optimization
Models,
See: Block diagrams
Moments, 2-11, 3-3
Monte Carlo simulation, 11-1
Moore-Shannon redundancy,
See: Redundancy
Multiple-line redundancy,
See: Redundancy

Nondecision redundancy,
See: Redundancy
s-Normal distribution, 3 -4, 9 -3

Optimization, 12-1
constrained, 12-6
Luus-Jaakola method, 12-19, A-1
unconstrained, 12-2
See also: Specific techniques

Parallel redundancy,
See: Redundancy (k-out-of- n)
Parameter estimation,
See: Estimation of parameters
Penalty function method (optimization), 12-17
Fiacco-McCormick, 12 -18
Poisson distribution, 2-10
Populations, 4-3
Probability
concepts, See: s-Independence, Distributions, Moments
definitions, 2-1, 2-2, 2-4, 3-1, 3-2

[^6]
ENGINEERING DESIGN HANDBOOKS


```
        Pare two (t)
1G0(C) Elements of Tereinal Eelllatics., Part Onm.
161(C) sments of Tereinal telltettce, Pert tom
161(C) Elments of Terainal Lalliatics, Fart Two,
        collection ind Amalvals of Dafs concorn*
        int Tarete (t)
    6(SBD, Elcoent, of Terainal Bulletico, Part Thret,
        Applicaston to Mfecile and Spase Tarkets(U)
        Gaife furget Yulatratility(d)
        C&uld-Fllled Projectile 0*ala
        amor and ire Applications(U)
        soll4 Propellante. Pert one
        tSolld Propellants, Pare tmo
        Pregertlen of Esploalves of military
            Integes!
            epropartiee of kaplonives of malicatr
        Intefest, Sectien 2 (teplaced by -17n
            explonive Tratan
        Prinetples of Eiplagive bohavior
        Eaplosionn to Alt, vare Ome
        typlostone In Alr, fapt fwo (U)
        Mllifary poroteghnfie, fact Ont, thenry sen
```



```
        Proredureo *nd ficesury
        mitirary Pyootochntra, Part thret. Prmetziep
        of Materiala l'a+A in Printerhnic Composfifion
```



```
        Ammuntimefor Purotechate ztfecta
    Mllitary Prpatecmelin, Payt flve, Dibllegrishy
    MAemy Weamon Syaten daslvala
    symen Analysto acd Cose-flfactivanete
        mopouter Alied nomigo of Nechonical Syitem,
            Part mom
```



```
        Papt TMN
        quveloment Galde far kelishility, Part ome.
            infreducting, wetheround. and Plamntog
            Oor Aret Materiel kesutrementa
        Develogeent "atcr fot Rollabllity, onrt twe.
            cocign for moluatlity
            Developaent Gulde tar teliabllity, Pate Three
            Relightlity Prediction
```



```
            kellanility meadyrcornt
            -Drretopegnr cald, for m+llabiltif, Dafe five.
            Contesetiog fce tolltbilty
            Gevelomemt culce for Reliablilty, Fits Sis,
            Mathmentical aponndix and Gloosary
```



```
                Dyiga
```



```
            Amextase
            Mellcopter lerfarmance Tentt:a
```

Nop 1000
 0
117
189

```
\begin{tabular}{|c|c|}
\hline No. int ins- & Itle \\
\hline 2 ns & Srusemen Compernct \\
\hline \(11^{19}\) & Prees \\
\hline \(211(\mathrm{C})\) & Putce. presiotiv, zlectricel, Pert ame (t) \\
\hline :12(3) & Vuree, Prentolty, Electical, fift im (t) \\
\hline \(213(5)\) & Pusec. Mrentalty. Electrical. Pere theor (t) \\
\hline 224(3) &  \\
\hline 219(c) & Putat, Preninicy. Electricol. Papt pive (t) \\
\hline 318 &  \\
\hline . 217 & exrtar wepren inotem \\
\hline 230 &  \\
\hline 214 & -selll arem lieot \\
\hline 2631 & (rensdes (r) \\
\hline 262 & matan ior Control of Prefoctite Fitam Malacterlatice (meslocen -264) \\
\hline 246 &  Gomefal. vith foble of Contenti. flemotit. and imen for sertes \\
\hline \(249(5)\) & mennition, socition 2. oustan for ferelad tifecte (t') \\
\hline 256 &  Fhishi Chapertertatice (meploced me-36!) \\
\hline 269 & memition, Sertion -. Deatian ter Prrioction \\
\hline 264 & aneveition. Sectim S. inapection ampecte of Aptillerv Ampntisas Deaten \\
\hline 269 & memietion, cection \(h\), maufacture of metillie remements al artillery menalitem \\
\hline 331 & Cune-arames \\
\hline 211 & xutite bevicta \\
\hline 258 & *acrun Tube \\
\hline 231 &  \\
\hline 215 & Smectral tharamearictica if 'werte theon \\
\hline 3 m & mutreatie matione \\
\hline 3n & Presellent Artweted Devid.* \\
\hline \(2 \times 1\) &  Hocket 4 \\
\hline \(2181(500)\) & Weadon evatome Efferetvemens (i) \\
\hline 292 & +Propulaton and Probellanto Cosplaced hr -ziss \\
\hline 2an & Strentines \\
\hline 2on(e) & Hathendo-feneta) (4) \\
\hline 298 &  intetration \\
\hline 298 &  emetrol \\
\hline 203 &  \\
\hline \(236(6)\) &  -"-atwent (1) \\
\hline 20s(c) & +furface-pmatr Mfabilez, Mart Five, Cenmetelmanver ( \({ }^{(1)}\) \\
\hline 206 &  and Povar Soutcea \\
\hline \(201(0)\) &  Frohion (') \\
\hline \(3 m\) & Pabele Dositan \\
\hline 312 & torational milding of plantic Pmutra \\
\hline 13 &  \\
\hline 223 & vire Contral Syatena -rimeral \\
\hline 124 & thre control Conoutiog switee \\
\hline 131 & cmavencatiok plosente \\
\hline 13S(CRD) &  Volvast I, Muntitors and Weapon Syatean (U) \\
\hline :34(san) &  Volume It, Elecrimatc Syatane and Eogiotical Sutimes (c) \\
\hline 137(san) & *bestign Enaineery' Muelear tifecta Manal (ometen). Volvee III, Vucteor Endiroment ( 1 ) \\
\hline 138(san) &  Folumen IV. Nuetear Effecte (t) \\
\hline 140 & Corrianea and twuntacerameral \\
\hline 14 & crasle: \\
\hline 62 & meonil svates \\
\hline 34 & top Carriagen \\
\hline 36 & mocton cartianea \\
\hline 149 & tevilibratopa \\
\hline 34 & cirval fee Mechant ont \\
\hline 4: & Traveratos yechantima \\
\hline 139 & theeled Aophinians. \\
\hline 3ss & the Autreotive Aeneativ \\
\hline : 6 & Autmometive suepenitone \\
\hline 137 & Antmortve madles and Muthe \\
\hline (4) & vilitary Vehicie flectitetl Systena \\
\hline 41 & Miltary vehicte pover pliant cosiling \\
\hline 410 & -Fiectronanetle Cmpastbility (EX) \\
\hline 411(s) & twineramility of comundeation-Flectrontr and Electinamptical Syatem (Except Caldod Manallen) in Electronse Wartape, bitt One, Inttoduction ant reneral Approach th Electrontr Warfare Vulnetahlitiv (V) \\
\hline 412(c) & \begin{tabular}{l}
*Wulnerability of comemateation-Electionfe and \\
 to Electronic Warfare, Part Two, Electronic Vartare Vulnefatility of fercical comuatcatione (U)
\end{tabular} \\
\hline 611(s) & avulnerability of comenicaiton-figierente and Flectromptical syasens (Eseep: Culded Misellea) to Electrmit Wartite, Patt Three, Eluctronic Varfare Vulnerablitiv af Gecund-lasem and Airbarne bryefliance ams fateret acoulatition madara (i) \\
\hline 414(\$) & thiliprability of commonication-Electronts ond FIectenomptical Systeat (Eacepl culded Mizatias) to Electronic Warfarty Dart Your, Dlectente Warfate Volartabllity of Aviotites (w) \\
\hline 415(3)
410(3) & Aulnerablitiy of commaleation-zlectronte and Electrompetical syatoat (Eneept Culded Miendion) to Electionse Warfare, fart five, opticalifloctconis Warfate Vulatethility of Electranpite syotent (b) - Vuinecantile at comenteatien-Electronte and \\
\hline 410(3) & \begin{tabular}{l}
- Vuinetanility at comenteatien-Eiectronte and \\
Hectinampteal spatew (Eveept culded mianilons to Fiectronte Werfate. Part tik, fiectienie Warfare \\

\end{tabular} \\
\hline 46 & samit feshmijar fretinotina \\
\hline \(4 \%\) & tmelite Coavetaion culde for milliapr applicatione \\
\hline
\end{tabular}
```


[^0]: *Nat colled "common-ztue."

[^1]: "As is customary, the symbol μ (for mean) is used for the parameter because the parameter happens to be the mean. This is also done in the s-normal distribution.

[^2]: Some of the formulas were adapted from Bef^{1}
 Domain of all parameters and random vorisble. is $(0,-1)$ untem otherwise stated
 For $s=1$ this is the exponential distribution

 - As is customary, the symbols μ ffor mean) and a fiter itanderd devistion) are uted for the permaters beciuse
 the paramerers tiappen to be the mean and standerd devation

[^3]: ${ }^{1}$ In polarization diversity, the transmitting and receiving antennas have dual feed horns. The wave is simultaneously transmitted with both horizontal and vertical polarization. In space diversity, the same wave is transmitted simultaneously over several physically distinct paths. Degraded diversity means thai only one polarizaticn direction or propagation path is operable.

[^4]: ${ }^{2}$ An Orderwire Channel allows station operators to communicate with each other.

[^5]: - Copyrighted 1975 by Institute of Electrical and

 Electronics Engineers, Inc. Reprinted with permission.

[^6]: Random numbers, 11-3
 Random sample, 4-3
 Random variables, $2-10$
 Redundancy, 7-1, 8-1, 9-1, 10-1, 7-3, See also: Repair active, 9-12, 10-16
 coding, $10-19$
 decision, 10.7
 k-out-of-n, 7-4, 8-1
 k-out-of-n:F, 6-21, 7-4, 8-1
 k-out-of-n:G, 6-21, 7-4, 8-1
 majority logic, See: Voting
 Moore-Shannon, 10-2
 multiple line, $10-11$
 nondecision, 10-2
 parallel,
 See: k-out-of-n
 standby, 9-9, 9-12, 10-15
 switching, 7-4, 10-15
 voting, 7-4, 8-5 10-7
 Regeneration points, 5-2
 Reliability
 block diagram,
 See: Block diagram
 measures, 9-2
 model,
 See: Block diagram
 prediction, 8-1, 9.1, 10-1, 13-1
 time-dependent, 9-1
 time-dependent, 8-1
 Repair, 7-1, 7-5, 9.12, 6.1, 6-29,
 See also: Redundancy
 Sample,
 See: Random sample
 point, 2-1, 3-1
 space, 2-1, 3-1
 s-Significance, 4-2
 Simulation,
 fee: Monte Carlo simulation
 Spares,
 See: Repair
 Standby redundancy,
 See: Redundancy
 Statistical theory, 4-1
 Switching,
 See: Redundancy
 Switching redundancy,
 See: Redundancy
 System
 analysis, 6-2
 reliability model, 6-1, 6-3
 state, 5-1

 ## T

 Transformation of variables, 3-3, 3-5
 Unconstrained optimization,
 See: Optimization
 Uniform distribution, 3-4

 Variance, 3-5
 See also: Moments
 Venn diagrams, 3-2
 Voting redundancy,
 See: Redundancy

 Weibull distribution, 3-4

