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CHAPTER 1

This handbook reviews the basic ideas and
formulas in probatility and statistics and
shows the kinds of models that might be use-
ful for the reliability of systems. The concept
of s-independence is discussed very thorough-
ly since it is so important in reliability im-
provements wrought by redundancy.

A large portion of the handbook deals
with the effects of redundancy, simply be-
cause the calculation of reliability for non-
redundant systems is so straightforward (al-
though often tedious). The distinction be-
tween redundancy and repair is blurred in
practice, especially when a failed unit is re-
placed by a good inactive unit.

Swoe of the techniques are presented
only i, their basic form. References are given
for further study. Often the designer and reli-
abuity engineer will have better things to do
than study sophisticated mathematics. It is
usually hetter to find a person already trained
in the subject who can then solve the special-
ized rroblems. In those cases the function of
this bandbook is to provide the designer and
relizlidity engineer with

(1} Lasic kncwiedge; so they can converse

intelligently with the experts, and

(2 perspective; s0 they know when to

call an expert.

In dealing with mathematics it is impor-
tant always to rcmember what mathematics
is, and what it isn’t. Mathematics per se is
rules and relationships between abstract con-
cepts. It is always “true” in the sense that it is
correct (assuming no rules were violated), but
all mathematics is not applicable to every-
thing. it is in applying mathematics to a prob-
lem that we get in trouble. We have to choose
what kind of mathematics to use, and then to
choose what real-world things will be repre-
sented by what mathematical concepts. For
example, is a particular material adequately
representable by elastic, viscoelastic, or vis-
cous equations? Or, is a physical coil of wire
representable by a lumped inductance in se-
ries with a resistance?

Probability theory is abstract mathematics
that can usefully represent many situations.
Much of this handbook shows how to repre-
sent things by probabilities and how (o ma.

INTRODUCTION

nipulate those probabilities.

There is \ittle that is new in probability/
statistics for reliability. The Bibliography at
the end of this chapter gives many references
for those who need instruction in those top-
ics. The books are labeled as Elementary, In-
termediate, or Advanced. This handbook
makes no attempt to rewrite all those books.

BIBLIOGRAPHY
Probability and Statistics Books

AMCP 706-110 through -114, Experimental
Statistics, Sections -5, USGPO (Inter-
mediate).

R. E. Barlow and F. Proschan, Mathematical
Theory of Reliability, John Wiley & Sons,
Inc., N.Y., 1965 (Advanced).

Vic Barnett, Comparative Statistical Infer-
ence, John Wiley & Sons, Inc., N.Y., 1973
(1975 corrected reprint), (Intermediate,
Advanced).

A. M Breipohl, Probabilistic Systems Analy-
sis, John Wiley & Sons, Inc., N.Y., 1970
(Elementary, Intermediate).

DA Pam 70-5, Mathematics of Military
. Action, Operations and Systems (Elemen-
tary, Intermediate).

A. J. Duncan, Quality Controi .nd Industrial
Statistics, Richard D. Irwin, Inc., Home-
wood, II'., 1965 (Elementary, Intermedi-
ate).

W. Feller, An Introduction to Protability
Theory and Its Applications, Vols. 1, II,
John Wiley & Sons, Inc., N.Y., Vol. I,
1957, Vol. 1l, 1966 (Advanced).

J. E. Freund, Modern Elementary Statistics,
Prentice-Hall, Englewood Cliffs, N.J.,
1967 (Llementary).

Gnedenko. Belyayev, and Solovyev, Mathe-
matical Methods of Reliability Theory,
Academic tress, N.Y., 1969 (Advanced).
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P. Hoel, Intrvduction to Mathematical Statis-
tics, John Wiley & Sons, inc., N.Y., 1962
{Elemuentary, Intermediate).

Mann, Schafer, and Singpurwalla. Methods for
Statistical Analysis of Reliability and Life
Data, John Wiley & Sons. Inc., N.Y., 1974
(Intermeuiate, Advanced!?

I. Miller and J. E. Freund, Probability and
Statistics for Engineers, Prentice-Hall,
Englewood Cliffs, N.J., 1965 (Elemen-
tary).

NBS Handbook 91, Experimental Statistics,
USGPO 1966 (Intermediate).
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E. Parzen, Modern Probability Theory and Its
Applications, John Wiley & Sons, Inc.,
N.Y., 1960 (Intermediate, Advanced).

E. Parzen, Stochastic Processes, Holden-Day,
Inc., San Francisco, 1962 (Advanced).

M. L. Shooman, Probabilistic Reliability,
McGraw-Hill, N.Y., 1968 (Elementary, In-
termediate).

Many of the early reliability texts, and
some of the more recent ones which are not
mentioned here, have an inadequate or poor
introduction to probability and statistics.
Most probability/statistics texts are quite ade-
quate.
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CHAPTER 2 - REVIEW OF ELEMENTARY PROBABILITY THEORY (DISCRETE)

20 LIST OF SYMBOLS

ABCE = sets
ApAg.B, B; = even's that units U, and
U, .xe Failed or Good

A.B,C.E = subsets of A,B,C,D.E
E{}= s-expected value of
Ep Eyr.Egp = events of Benign, High Tem-
perature, Electrical Tran-
sient environments
E, ,Eg = events of Light and Severe
environments

M= ith central moment

N, Ny ,Ng = number of subsets in A,B.E
pmf = probability mass function
Pr{}= probability of

denotes statistical definition

mean

standard deviation

variance

compleie sample space

null event

union

intersection

b

Q
-

[ T R N T |

DC»2&

2-1 INTRODUCTION

The question always arises “What is prob-
ability?” Some say it is relative frequency;
others say it is degree-of-belief; and still
others have different concepts. In many good
reliability and engineering textbooks (and
virtually all mathematical books) probabilities
are mathematical concepts which can then be
applird to such things as relative frequency
and degree-of-belie{. The situation is analo-
gous to plane geometry. Plane geometry is a
mathematical theory that uses concepts such
as peint and line. The theory is true (consist-
ent) regardless of what a point or line is taken
to be. Plane geometry often is applied success-
fully to many reasonably flat things in every-
day life, and we associate point and line with
the everyday concepts.

vobability and statistics are related very
closely to each other. The difference between
them is not clear to many engineers. Proba-
bility theory usually considers the parameters
of a general problem as known, then com-
putes numbers (probabilities) about particular
<ets of events. [t goes from the general to the

particular. Statistics on the other hand treats
actual data and tries to decide what useful
things can be done with them and how to get
them. It goes from the particular to the gener-
al. A statistic is a number obtained from a
sample or obtained from manipulating other
statistics. In engineering problems one usually
uses a mixtiure of probability and statistics;
there is little to be gained in debating which
calculations are probabilistic and which are
statistical.

2-2 BASIC PROBABILITY RULES

2-2.1 SAMPLE SPACE, SAMPLE POINT,
EVENT

These are basic concepts for any proba-
bility problem. The sample space is made up
of all the sample points. An event is a collec-
tion of sample points; it can contain as few
sample points as rone, or as many as all. The
concepts are best illustrated by examples. See
the Bibliography in Chapter 1 for books
which can explain the concepts.

Example 1. For one throw of a single die,
the sample space is the set of numbers 1, 2, 3,
4, 5, 6; i.e., the sample space is all possible
values that can arise. Each value is called a
sample poin.. There are six sampie points in
the sampl¢ space for this example.

Every possible single outcome of an ex-
periment is a sample point. The naming of
every samyle point is a first step in making a
probabulistic .nodel of any problem, although
it often is done implicitly. Each sample point
also has a proba%ility associated with it. The
probability usually is assigned or calculated
from known event-probabilities.

In the example of one throw of a single
die, the probabilities usually are assigned by
defining the die to be “fair”; i.e., each face
has an equal probability of appearing. Then
the probability assigned to each sample point
is 1/6. By definition, the sum of the proba-
bhilities for all sample points must be one.

Engineers who use probability often go
astray because they do not understand sam-
ple-space and assignment of probabilities to
each sample point.

21
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Example 2. A coin is tossed three ti:nes.
What is the sample-space? Let t denote a tail
and 4 & head. Then there are eight sample
points in the sample space:

tet htt
tth hth
tht hht
thh hhh

The event ‘First toss is a head’ has four sam-
ple points: htt, hth, hht, hhh. The event
““First toss is a head’ N ‘Last toss is a tail"”
has two sample points: htt, hht. The event
‘First toss is neither a head nor a tai!’ has no
sample points.

2-2.2 NOTATION AND DEFINITIONS

There is no universally accepted and used
set of notation. Because the difficulties engi-
neers have with probability are often basic in
nature, a notation is selected which is not
easily confused with something else, even
though it is sometimes cumbersome. The no-
tation and definitions are illusirated in Figs.
2-1 and 2-2.

) The null event; viz., the event
contains no sample points.

Q The ~~aplete sample space;
viz., tr 2 event contains all the
sample points.

U Union, and/or; e.g., AUB con-

tains all sample points which
are in A and/or in B. (Some-
times + is used.;

N Intersection, both/and; eg.,

Pr{-}

Pr{:[-}

mutually
exclusive

exaaustive

partitioning

(A) Complement

FIGURE 2-1.
2-2

(B) Intersection

ANB contains only those sain-
ple points which are in both A
and B. (Sometimes X is used.)
Probability of the event (or
sample point; contained in the
{ }ieg.

Pr{a} = probability of the
sample point a

Pr{A} = probability of the
event A

Conditional probability; prob-
ability of the event to the left
of the |, given that the event
(condition) to the right of the
| has occurred;e.g., Pr {Al B}
is the conditional probability
of event A, given that the
event B has occurred.
Pr{A|B}=Pr{ANBYPr{B};

Pr{B}#0.
Pr{A|B} is meaningless (con-

tradiction in terms)
itPr{B}= 0.

Two events are mutually ex-
clusive if and only if they have
no sample points in common;
e.g., A and B are mutually ex-
clusive if and only if ANB = &,

A set of events is exhaustive if
and only if the union of the
events contairs all sample
points in the sample space;
e.g., A4, B, C are exhaustive if
AUBUC = Q.

A set of events is a partition-

P

-
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(C)  Union

Example Event Relationships for 2 Events
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{ | 8 9 10 11 19! 8 9 10 11
! |
! . [ [ . [ ' / . 3 . . . C
; {13 14 15 16 17 C” hs 14 15 16 17
3 ! |
3 i . . . » . ' . [ - . D
118 19 20 21 22| 18 19 20( 21
SomeTTss s s s s v
|
[} }
\___I
]
3
Q =1 through 23
A =1 through 5, 7, 12
B =5, 6, 8 through 12 Definitions
C = 8, 9, 12 through 15, 18 through 20
D= 22, 23
Examples of Set Relationships
AnB =512 A = 6, 8 through 11, 13 through 23
BNC = 8,9, 12 B = 1 through 4, 7, 13 through 23
CnA = 12 c = 1 through 7, 10, 11, 16, 17,
ANBNC = 12 _ 21 through 23
AnD  =¢ D = 1 through 21
BnD =4 AND = 22,23
cnp =9 DCA
DC(ANB)

DU(BNC)= 13 through 15, 18 through 20

22€eD

FIGURE 2-2. Example Event Relationship for 4 Events
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ing of the sample space if and
only if the events are all mutu-
ally exciusive and the set is ex-
haustive. (The name comes
from the way a set of parti-
tions breaks up a room into
smaller rooms, each of which
is separate; but every part of
the original room is in some
smaller room.)

Denotes the complement of an
event; e.g., A is the comple-
ment of A.

The complement of an event
contains all the sample points
in the sample space which are
not in the event. A formal def-
inition is B = A if and only if
AUB=Q and ANB = ¢.
Beware of the comma, it is not
ordinarily a defined symbol.
Often intersection is meant,
but one can’t be sure.

Probability of the event to the
left of the *“;”. The events or
parameters to the right of the
semicolon are known. The
notation is often used for
emphasis or as a reminder. It is
similar to Pr{+|*} except that
the event to the right of the
“I” is a random one, whereas
the event or parameters to the
right of the *;” are certain
(known exactly).

a € B means that q is a sample
point of B.

A C B means that A is a subset
of B; viz., all sample points of
A are also in B, but all sample
points of B need not be in A.

2-2.3 RULES, LAWS, AND DEFINITIONS

2-4

FOR EVENTS
Let A, B, C be any events.
AUA=Q (2-1)
ANA =9 (2-2)
AUA = A (2-3)
ANA = A (2-4)

AUB = BUA (2-5)
ANB = BNA (2-6)
AU(BUC) = (AUB)UC = AUBUC  (2-7)
ANBNC) = (ANBYNC = ANBNC  (2-8)
AU(BNC) = (AUB)N(AUC) (2-9)
AN(BUC) = (ANB)U(ANC) (2-10)
(AUB) = ANB (2-11)
(ANB) = AUB (2-12)

2-2.4 RULES, LAWS, AND DEFINITIONS
FOR PROBABILITIES

Let A, B, C be any events; and let

A,,i=1,.., N, be a partitioning of A.
(The A, are mutually exclusive
and exhaustive.)

B,,i=1,.., Ny be a partitioning of B.
(The B, are mutually exclusive
and exhaus.ive.)

a,j=1,.., M be the sample points in A.

E;,i=1,..., N be any N events.

Pria}=% Prig) (213)
0<Pr{A}<1 (214)
Pr{®}=0 (215)
Pr(Q)=1 (216)

Pr{AUB}=Pr{A}+Pr{B}- Pr{ANB} (2-17)

Pr{AUBUC} =PriA} + Pr(B} + Pr{C}
—Pr{ANB} — Pr{BNC}
—Pr{CNA}+ Pr{ANBNC}
(2-18)

Pr{A\B}= Pr{AnB}/ Pr{B}for Pr{B}+ 0
(2-19)

Ng
Pr{E,UE,U---UEy | = 3 PriE,)

i=1

o

-1

- Y. PriEE;)

=1

t-1 -1

+ Y Pr{ENFNE,}

1 =1 k=1

25

e £ PHE,NE,n ++- NE, ) (2:20)




Bra ]

it e

., T

P w e s

D

ownloaded from http-/Www.everyspec.com

-< Sabiniofl e Lt il

The first term in Eq. 2-20 is an upper
bound; adding terms in succession provides an
alternating series of bounds which get increas-
ingly better, until exactness is reached when
all terms are used.

Pr{AnB}= Pr{A|B}Pr{B}= Pr{BIA}Pr{A}
(2-21)

Eq. 2-21 is a form of Bayes’ Theorem.

Pr{AnBNC}= Pr{Al(BNC)} Pr{BIC} Pr{C}
(2-22)
Na
Pr{A}= 3} Pr{a;} (2-23a)

i=1

Ng
Pr{A}= 3 Pr{AIB,}Pr{B;} (2-23b)
i=1
Pr{BiA,;} Pr{A}
Pr{AB}= — (2-24)

3. Pr{BIA,}Pr{A,}
j=1

Eq. 2-24 is a form of Bayes’ Theorem.

2-3 s-INDEPENDENCE

There are several equivalent definitions of
s-independence. From an engineering point of
view, the most satisfactory definition is Eq.
2-25.

A and B are s-independent if and only if
Pr{A|B}=Pr{AIB}=Pr{4}. (2-25)

That is, the probability of A is the same re-
gardless of whether we know that B has
occurred, or has not occurred, or we do not
know about B -- B just doesn’t make any dif-
ference. There are several equations that are
logically equivalent to Eq. 2-25, each imply-
ing the others. (The recond equation in Eq.
2-25 actually is implied by the first one.) The
most satisfactory definition from a statistical
point of view is Eq. 2-26.

A and B are s-independent if and only if
Pr{ANB}=Pr{A} Pr{B}. (2-26)

Eq. 2-26 is defined even for Pr{ B} =0 or 1
whereas Eq. 2-25 is not. The extension to
more than two events is easier with Eq. 2-26.

AMCP 708-197

N events are s-independent if and only if
for every intersection oi events taken 2, 3, ...,
N at a time, the probability of the intersec-
tion of those events is the product of the
probabilities of the individual events. This can
be a complicated concept; see the Bibliogra-
phy at the end of Chapter 1 for a further
discussion.

Example.

Suppose there are 2 units (from one popu-
lation) in a subsystem and both must fail for
the subsystem to fail. If the probability of
failure of each is 0.200 and the probability of
subsystem failure is 0.200 X 0.200 = 0.0400,
then the failure events are s-independent.
Even if the probability of subsystem failure
were 0.0404 (e.g., 1% above the 0.0400 fig-
ure), the failure events could be considered
s-indenendent for engineering purposes.

Suppose that the probability of failure of
each unit is 1.00 X 10 and th probability
of subsystem failure is 1.00 X 107°; then the
failure events are s-independent. But if the
probability of subsystem failure were
0.000401 (0.0004 more, just as in the pre-
ceding paragraph), the failure events would in
no way be s-independent. When failure proba-
bilities are very small, one must be very care-
ful not to ignore events whose probabilities
might ordinarily be neglected.

2-4 CONDITIONAL s-INDEPENDENCE

A very important concept is conditional
s-independence; i.e., two (or more) events can
be conditionally s-independent, given a par-
ticular event. All general theorems on vroba-
bilities are valid also for conditional probabil-
ities with respect to any particular event C,.
Thus Eq. 2-25 becomes

Pr{Al(BNC))}= PriAI(BNC))! (2-27)
= PriA|lC, }
and Eq. 2-26 becomes
Pr{ANB |C,}=Pr{A|C,} Pr{BiC;}. (2-28)
In many engineering situations, if two events
A and B (say, failures) are not s-independent,
they will be conditionally s-independent,

given each event of a set of events which is a
partitioning of the sample space.

2-5
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Exampi=,
Ay, Ag events that unit U, is failed or

By, B; events that unit Uy is fail<d or
good
Let the sample points, events, and associated
probabilities be as shown in Table 2-1. The
probability of each event, as shown, is the
sum of the probabilities of 2ach of the sample
points in the event.

Are the events A, B, s-independent? To
find out, use Eq. 2-26.

Pr{ApNBj }=Pr{(a,b,)}= 0.158

Pr{Ap} X Pr{B, }=0.250 X 0.380
= 0.096
They are not the same (0.158 # 0.095); so
the events A, By are s-dependent.

Suppose there are two possible environ-
ments, light (event E; ) and severe (event Eg),
and that the new sample space, events, and
probabilities are as shown in Table 2-2. The
events A, and B, are conditionally s-inde-

TABLE 2-1. SAMPLE SPACE FOR EXAMPLE

8¢ B,
0.620 0.380
AG G’bg "Fb!
0.750 0.528, 0.222
Ag ab, oy
0.250 0.092 Q.158

The number associated with each of the 4 sample
points (aghy, aghy, aghy, aghy) is the probability of
that sample point.

The events are defined as Ag Z a0y, 8.5
AF = ‘8#}5, 8#(’
By = b, ab,)
By = laghys, ahy)

2-6
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pendent as shown by the calcula’ions in Table
2-3. Egs. 2-28 and 2-19 are use< in the calcu-
I tion.

The conditions under which events are
conditionally s-independent are sometimes
called common-modes,* and the failures
which resuit from severe common-modes are
called common-mode feilures. This phenom-
enon is so important it will be illustrated with
another example.

Example, Common mode {cause) faiiure:
Notaticn:

Ap, Bp = failure events of units U,
and Uy
Sp = ApNBg, failure event of
= the system S.
EgByrEsr = 4 partitioning of the sam-

ple space: event of a Be-
nign Environment, a High-
Tempersture Environment,
and sn Electrical-Transient
Environment.

Given: The events 4., B, are conditionally
s-independent, given E, (i = B, HT,
ET).

Pr{Ag\Ey} = Pr{ByE,} =6 X 10 ,
Pr{E,} = 0.9976

Pr{Ag\Eyy} = Pr{BplEyp } = 1 X 10°
Pr{E,, } =2X 10?

PriAglEp ) = Pr{BplEgr } =1X 167!,
Pr{Eg l=4x 10

Cursory inspection of the data shows that U,
and Uy sre quite reliable if the environment is
ben:gn, and that nonbenign environmentis are
rare. We first calculate the unconditional fail-
ure probability for U, and U, (see Table
2-4). It is negligibly different from the benign
condiiional failure probability. This leads us
to believe, reasonably enough, that the effects
of the nonbenign environments are negligibie.

But then we calculate the protabhilities
that both U, snd U, are failed (see Table
2-4). The situation ie now quite different; one
of the nonbenign environments is mast impor-
taat,

*Now coiled “common-cause.”

vz
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E = (pH1,p121,p21‘|,p221):AG = (p111,p121,p1l2,p122);86 = (p111,p211,p112,p212)

Eg = p112,p122,p212,0222); [ = (p211,p221,p212,p222); Bf = (0121, p221,p122, p222)

'}
AMCP 706-197 }
| |
3
TABLE 2-2. SAMPLE SPACE FOR MODIFIED EXAMPLE 3
B E, BeE, Bg Es B¢ Eg i

0.560 0.140 0.060 0.240
1 Ag &, p111 p121 Ag Eg p112 p122 H
E 0.630 0.504 0.128 0.120 0.024 0.096 s
é
3
‘ Ag £, p211 p221 A Eg p212 p222 ?
k 0.070 0.056 0.014 0.180 0.036 0.144 j

E, Es ]
i 0.700 0.300

Explanation of notation for p ;;, :

i position reserved for event A
, Pposition reserved for evant 8

k position reserved for event £

1 = "“good” for events A and B

2 = “fail"” for events A and B
4 1 = “light” for event E :
F 2 = “severe” for event E 5
1
K §

:

Ll A

W e

Yy
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TABLE 2-:3. CALCULATIONS TO SHOW EVENTS A, AND 8¢ ARE CONDITIONALLY s-INDEPENDENT

Procedurs

1. State the sample space, events, and “heir probabilities.

2. State the events to be tested for conuition! s-indeper
dence an the conditions.

3. State the equations tc be tested.

prianaic, K priaic;} e {Bic, } (2:28)

4. Use the definition of conditional probability to find each
of the probsbilities.

pr{aig}= Princs}i pris YorPr{g}20 (2-19)

6. Find the sample points in ¢ach of the intersections.

6. Find the probabilities by adding the probabilities of the
sample points.

7. Calculate the conditional probabilities.
Pr{lagnBg)E, |

Example
1. See Tavle 2-2.

2. Ag, Actobe conditionally s-independent.
E;,Eg re the conditions.

3. Pr{lApnBhE; }Z Pr{AFlf,-}Fx{BFIE,-} fori=L,S

4. Pr{lAgnBLE; ) = PriAgnBenE; I PriE;}  (2.29)
Pr{ApiE;} = Pr{AgnE, }I PriE;} {2:30)
Pr{BeiE; )} = Pr{BenE; Yl PriE;} fori=L, S (231)

5. AFGBFGEL = {p221)
AgnBnEg = p222)
AgNEL = 211, p221)
ApnEg = (p212,p22:)
BENE, = (p121,p221)
BenEg=(p122, p222)

6. rr{AgnBenE, } = 0.014
PriAgnBgnEg} = 0.144
Pr{Ag0E; } = 0.056 + 0.014 = 0.070
PriAgnEg} = 0.036 + 0 144 = 0.180
Pr{BgnE, } = 0.126 + 0.014 = 0,140
Pr{BgnEg} = 0,096 + 0.144 = 0.240
Pr{€, } = 0.504 + 0.126 + 0.056 + 0.014 = 0.700
Pr{Eg} = 0.024 + 0.096 + 0.036 + 0.144 = 0.300

-

7. Pr{lAgnBE)IE, = 0.014/0.700 = 0.020
Pr{AgnBEiEg) = 0.144/0.300 = 0.480
Pri{AgiE, } = 0.070/0.700 = 0.100

= Pr tAFf\BF(\EI }/ Pr {EI } (2-29)
Pr{AgIE, } = PriAgnE; }1 PriE, } (2300 Pr{ApiEs) = 0.180/0.300 = 0.600
Pr{BgiE,} = Pr{BENE, )/ PriE;} for1 =L, @an  Priepe, } = 0.140/0.700 - 0.200
Pr{BflEg} = 0.240/0.300 - 0.800
8. Check the equations in step 3 fori1=1L:
0.020  0.100 X 6.200 = 0,020 yes
for1 =8
0.480 20.600 X 0.800 = 0.480 yos

The events Ap, B aie conditionally s-independent, given each of the conditions E; , Eg. As shown in the previous example, Ag,

8f are not {unconditianally) s-independent.

2-8
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) In svstems which use redundancy to completely. The key nature of conditional s- .
achieve very high reliability, the importance independence ought always to be in the an- '
of common-mode failures often is overlooked alyst’s mind when he uses redundancy. ;

TABLE 244. COMMON MODE (CAUSE) FAILURE CALCULATIONS

' Procedure Example

3

1. Calculate the Pr {A¢ } 1. Priag}e Y priai; )} prfE;} (232

Adapt j=1

Ns 16 X 10*) X 09976 + (1 X 107} X (2 X 10°)
rria}= Y {aig)er ;) (2-230) +(1X10™) X (4X 10™) =6.59 X 10™*
j=1
2. Calculste Pr{8g} 2. PriBe}=Pr{Ag}=6.59 X 10°* because Ag and Bf are
) interchangeable in the probabilities as given.

The unconditional probabilities differ from the benign conditional ones by less than 10 %. {In practice rarely is 8 low probebility
of failure known as accurately as within ¢+ 10%.)

3. Calculzte the conditional probabilities of AgNBg. Adapt 3 Pr {(AFHBFHEB} =(6 X 10*)? = 0.00036 X 10
Eq. 2-28. Pr{ApNBE)IE; }= Pr{AgIE; }Pr (BpIE, ], Pr{lAgnBe)Eyr} =11 % 10%)% =01 X 10°
fori= B, HT,ET. Pr{lag BplEgT}=(1x10") =10x t0°

4. Calcutate Pr{acnsg }. 4. Pr{Agn8c} = (0.00036 X 10°) X 0.9976 + (0.1 X 10°)
Adapt Eq. 2-23b. X 2X107) + (10X 107°) X 14X 16*) = 0.36 X 10™

+0.200 X 10°® + 4 X ;0% =456 x 10
5. Calculste Pr{Ag } Pr{Bg} S Pr{Ap}Pr{Be}=- (6.59% 10°} =434 107
From step 4 it is seen that virturlly the only “caise’” of system failure is the common-mode Electrical Transient Environment.

Fiom step 5, 1t is seen that if (unconditional) s-indepe 'dence were to have been assumed, the failure probability of the system
L’ would have been underestimated by a factor of 10.
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2-5 DISTRIBUTIONS

Very often the sample space is a subset of
the integers (or can be put into 1 - 1 corre.
spondence with some of the integers), and the
probability to be assigned to a sample point is
a function of the integer which corresponds
to the sample point. The probability mass
function (pmf) is the function which assigns a
probability to each sample point. This is illus-
trated in Table 2-5,

2-5.1 RANDOM VARIABLES

When the sample space is associated with

- vaww T TR, Y T e T Y T S P p—L
: =% Downloaded from http://www.everyspec.com
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the integers, it is convenient to introduce the
notion of random variable. For ~xample, the
events C, and E, in this chapter are random
variables, and the probability of the event
depends on the integer i. A variable is a ran-
dom variable if the uncertainty involved with
it is important, i.e., if probabhilities need to be
associated with it. This is an engineering
decision; for example, the lengths of posts to
be driven in the ground might not be con-
sidered random even though they had a
spread of * 10%, whereas the diameters of
ball bearings would probably be random vari-
ables if their spread was + 1%.

TABLE 2-5. DISCRETE DISTRIBUTIONS

2-10

Einomial Poisson”
varameters Py.Pa N u

(p1 + Py = 1)
random variables ny, Ny n

(ny + ny=N)
pmf NI PPy ek un

— T P1 P2

nytn, ! n!
mean U PyN.pyN k
variance 02 PPN u
3rd central moment M, Npypylp, — py) M
4th central moment M, Npypy (3Npypy, — Boyp, + 1) u(3u + 1)

- ... 0 Py
coefficient of variation — u™
[ PN
Py — P

coefficient of skewness -—(—;5:-’ -2 ! '

(Npypy) %
excess coefficient of kurtosis

M, 3 6 + 1 1
a4 N Noyp, .
*As 1s customary, the symbol u (for mean) 1s used for the parameter because the param-

eter happens to be the mean. This is also done in the s-normal distribution.
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There is nothing mysterious about ran-
domness and random variables. If you need
something to be a random variable, it is; if
you don’t need it to be, it isn't.

2.5.2 MOMENTS

Random variables with pmf’s have mo-
ments, Th2 two conventional points about
which to take moments are the origin and the
mean; when taken about the mean, they are
called central-momenis. The second moment-
about-the-mean is the variance (square of the
standard deviation).

The nth moment, about the origin, of x is
the s-expected value of x";
E{x"}= Txrpmf {x,} (2-33)

3
where £ implies the sum over the domain of
x,. (It'is presumed that the series converges
absolutely; if not, a texthook ought to be
consulted.)

The nth moment, about the mean, of x is

- Y PN
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the s-expected value of (x — u)*:
E{(x~=u)y}=2 (x; = p)" pmf {x;}
(2-34)
whereu = F {x)

2-5.3 TWO DISTRIBUTIONS

Two common diwscrete distributions are
the binomial and Poisson. Table 21 gives
their definitions and properties. The Poisson
distribution is often used as an approximation
for the binomial distribution; it is usually ade-

quate if the Poisson probability 3 pmf{n}

is negligible. n=N+1

The adaptation (in most places) can be
made mechanically as follows:

pyN->u
N-»>w

py =1

2-11
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CHAPTER 3 REVIEW OF ELEMENTARY PROBABILITY THEORY
(CONTINUOUS)

3-0 LIST OF SYMBOLS

C = Conditional event
Cdf{} = Cumulative distribution function
Cov{} = Covariance
E{} = s-Expected vaiue
flx) = pdf{X}
M, = ith central moment
pdf{} = probability density function
Pr{} = Probability of
8- = denotes statistical definition
Sf{} = Survivor function
Var{} = Variance
x,y,2 = particular values of X,Y (also used

as subscripts)
X,Y,Z = random variables
4 = mean

¢ = standard deviation
x = integral over the domain of X

3-1 INTRODUCTION

When the sample space is continuous rath-
er than discrete, the theoretical basis of prob-
ability theory can become much more sophis-
ticated. However. many relatively simple
problems can be solved by a straightforward
extension of the concepts in Chapter 2. Only
those straightforward concepts are disciissed
in this volume. Those who nee:d more ad-
vanced concepts ought to consult the Bibliog-
raphy in Chapter 1.

The concept of probabilit ;-density needs
to be introduced. It is analc scus to physical
density functions, where cor.tinuous variables
are being used. For example, a 10-ft long uni-
form bar which weighs 200 Ib has a density of
(200 1b)/(10 ft) = 20 Ib/ft It is not meaning-
ful te talk about the weigat of a point along
the bar, only the weight between two points.
If the bar is nonuniform, then the density
changes from point to poiat along the bar.

Probability densities can be very mislead-
ing because of possible transformations of the
variables. For example, if a random variable
has a uniform (constant) probability density,

the loganthm of that random variable will
NOT have a uniform probability density.

The basic rules for probability are quite
similar to those for the discrete case, but the
notation is usually somewhat different.

3-2 BASIC PROBABILITY RULES
3-2.1 SAMPLE SPACE, EVENT

The sample space is the domain of the
random variable (i.e., the values that can pos-
sibly be assumed by the random variable) or
the domains of the several random variables.
For example, the strength of a metal has the
domain (0,%0).

An event is the occurrence of some por-
tion of the sample srace. For example, an
event might be “Strength > S, where S, is
some constant. Figu.. 3-1 shows some set
rules for continuous space.

3-2.2 NOTATION AND DEFINITIONS

Notation Definition
capital letter The name of a random

variable.

A specific value of ile
random variable.
Probability of the event
inthe { }e.g.,

Pr{X < x} = probability
of theevent X< x
Conditional probability;
probability of the event
to the left of the |, given
that the event (condi-
tion) to the right of the |
has occurred.

Probability of the event
to the left of the semi-
colon. The events or pa-
rameters to the right of
the semicolon are known.
The notation is often
used for emphasis or as a
reminder.

lower case letter

Pr{-}

Pr{-|-}

Pr{-;}

31
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Q cdf{-} Cumulative distribution
i function of the variable
inside the { }e.g., Cdf{X}
=Pr{X<x}
pdf{-} Probebility density func-
tion of the variable inside
the (); it is the derivative
of the Cdf, if the deriva-
tive exists.
Sf{-} Survivor function; Sf{X}
= PriX » x}=1 -
(A)  Union of X and Y (written X UY) Cdf{X} for continuous
variables
. both/and, used as a
symbol analogous to in-
Q tersection; e.g., it is used
é to denote a joint pdf.
s Used in Cdf, pdf, Sf, etc.,
f i. a fashion and with a
i meaning analogous to
: that for Pr{-;} and
Pr{-|-}

€0 el G s et - Pp

3-2.3 RULES, LAWS, AND DEFINITIONS
FOR PROBABILITY DENSITIES

(B) Intersection of X and Y (written X N Y) Let X, Y be suitable random variables )
with domains (—=,=).
pdf{X}>0 (3-1)
0< Cdf{X}< 1 (3-2a)
0<Sf{X}<1 (3-2b)

Q
//// Let ]
% fix) = pdf(X)
/ O/ szl
///////// e ot o ¢

(C) A set (A) and its complement (A) then
f(x) = marginal pdf of x
F(x) = marginal Cdf of x
&(y) = marginal pdf of y
G(y) = marginal Cdf of y
FIGURE 3-1. Venn Diagrams Showing Set F(x) = H(x,>) (3-3a)
Relationships G(y) = H(,y) (3-3b)

3-2

3
@
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While “h or H” uniquely determines “f or F”’
and “g or G”, “f or F” and “g or G”, unique-
ly determining “h or H” is not true because
the form of the s-dependence of x and y is
not then known.

324 TRANSFORMATION OF VARI-

ABLES
Let X,Y be two suitable random variables
fix) = pdf{X}
&(y) = pdf{Y}
y =y(x)
8(y)Mdy = f(x)dx (3-4a)

) =@ 1§ (34p)

The form of Eq. 3-4a is usually easier to re-
member. Variables can be transformed direct-
ly, within a Cdf, with no complications at all.

3-2.5 CONVOLUTION

Let

1. Z, X, Y be suitable random variables
with domains (—eo,>)
2. Z=X+Y
3. w(z)=pdf{Z}
f(x) = pdf {Y'}
8(y) = pdf{Y}
h(x,y) = pdf{X,Y'}

Then, the convolution formula is

w(z) = | h(z — yy)dy = ‘/;i.l(x,z - x)dx g6

= Jh(x,z — x)dx

If X and Y are s-independent, then the con-
volution formula is

w(z) = [_f&)e(z — x)du = f flz — y)g(y)dy
= [j(z - y)g(y)dy (36)

3-3 s-INDEPENDENCE AND CONDITION-
AL s-INDEPENDENCE

The notion f s-independence is analogous
to that for discrete distributions.

- e mmee e ——————— S — —————— . = r
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X,Y are s-independent random variables if
and only if

pdf{X,Y}=pdf{X}pdf{Y} (3-7)

The concept is the same for conditional

s-independence. X,Y are conditionally s-inde-
pendent random variables if and only if

pdf{X,YIC}= pdf {X|C}pdf{Y'C} (3-8)
where C = a condition (event).

Conditional s-independence plays a very
important role in reliability calculations
where redundancy is involved.

34 DISTRIBUTIONS

In reliability engineering the most com-
mon domain for a random variable is (0,%).
Examples of variables with the domain (0,)
are strength, time, failure rate. In many cases
where the domain is (—e,=), the probabilities
associated with (—=,0) are negligible and are
included only to simplify the mathematics.
This is especially true for the s-normal distri-
bution wherein negative values of sorae vari-
ables are physically meaningless; but it is con-
venient to integrate over the whole real line.

Continuous mathematical distributions
rarely represent physical phenomena over the
entire domain of the variable. Usually, how-
ever, the probabilities associated with the dis-
turbing part of the domain are negligible. If
they are not, then of course, the model must
be reformulated.

3-4.1 MOMENTS

Random variables with pdf’s have mo-
ments. The two conventional points about
which to take moments are the origin and the
mean; when taken about the mean, they are
called central moments. Two random vari-
ables can have joint raioments, although only
the second is used practically. Lei X be the
random variable and f(2) = pdf{X ).

The nth moment (about the origin) of X
is the s-expected value of x":

E{(Xn} = /x x" f(x)dx (3-9)

where X implies the integral over the domain

3-3
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of X. (It is presumed that the integral con-
verges absolutely: if not, a textbook ought to
be consulted.)

The nth moment, about the mean, of X is
the s-expected value of (X — u)":

E{(X—upr}= & f(x)dx(3-10)

where u = £{X}
Let X and Y be random variables
fix) = pdf{X}
8ly) = pdf{Y}
h(x,y) = pdf{X,Y}
u, =E{X})
n, =E{y}
then Var{X}= E{(x — u)?}
and (3-11)

Cov{X.Y}=E{(x — u, Xy — n,)}

= (x = pu, Ny — n, Ya(x,y)dxdy
ﬁ./'l ’ (3-12)

The linear-correlation coefficient is defined as

Covi{X.Y} (3-13)
[Var{X}Var{Y}}%

P

34.2 DISTRIBUTIONS AND THEIR PROP-
ERTIES

The most popular distribution for time-
to-failure or time-between-failures is the expo-
nential. There are two reasons for this popu-
larity.

1. The distribution fits many data with-
out doing too much violence to an engineer-
ing concept of goodness-of-fit.

Downloaded from http://www.everyspec.com
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2. The failure rate is a constant, and thus
the distribution is very tractable.

The most popular distribution for mate-
rial properties, device parameters, and gener-
alized “stremes”, “potentials”, and “currents”
is the s-normal distribution. There are two
reasons for its popularity.

1. The distribution fits many data with-
out doing too much violence to an engineer-
ing concept of goodness-of-fit.

2. The distribution is so tractable, has no
parameters for the besic distribution, and con-
volves into itself.

Most distributions can be transformed in-
to something that looks different by a linear
transformation of the variable. Custom, more
than anything else, determines what the
standard form is. If a linear transformation X
= qU + b is applied to a distribution, the
mean and variance are transformed as follows:

E{X}=aE{U}+ b (3-14a)
Var{X}=a2Var{U} (3-14b)
There are usually several ways of writing the
parameters of a distribution, e.g., a scale
parameter can be used in the form \x or x/a
(where x is the random variable and a,\ are

parameters). The forms in Table 3-1 are cho-
sen to be useful to reliability engineers.

REFERENCE

1. W. G. Ireson, Ed., Reliability Handbook,
McGraw-Hili Book Comrany, Inc.,
N.Y. 1966.
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CHAPTER 4 REVIEW OF ELEMENTARY STATISTICAL THEORY

41 INTRODUCTION

This chapter presents some of the statisti-
cal concepts which are useful in a reliability
context. The Bibliography at the end of Chap-
ter 1 gives elementary, intermediate, and
advanced texts on probability and statistics. It
is not the purpose of this chapter to write
another textbook on statistics.

The purpose of statistics is to help people
analyze real data and draw reasonable conclu-
sions from them. In reliability engineering,
the function or statistics most often will be in
showing an engineer what he does NOT know
from the data; i.e., statistics will provide an
engineer with a feeling for the uncertainty in
the conclusions he wants to draw from the
data.

The few concepts of statistics that are
important in reliability ought to be carefully
learned. It is better not to use them than to
use them incorrectly.

42 ESTIMATION OF PARAMETERS

It is usually convenient to summarize a
mass of data by stating a distribution from
which they might well have come. This usual-
ly is done by choosing a distribution (on the
basis of previous ideas, simplicity, massaging
of the data, or something else) and then esti-
mating the parameters of the distribution.
There are several populer methods of estimat-
ing parameters; they are not detailed here--but
Par! Six, Mathematical Appendix and Glossu-
ry, shows estimation methods for many of the
popular distributions.

The important thing about an estimate is
its properties, not how you got it. In these
days of readily available computers, the cost
of making estimates whose properties are
good and well known is negligible compared
to the cost of getting the original data.

4-2.1 s-EFFICIENT ESTIMATOR

For engineers, s-efficieacy is what estima-
tion is all about. Any estimator uses a statis-
tic; that statistic has properties such as a mean
value and a variance. The s-efficiency of an

estimator is measured by the second moment
of the estimator taken about the true value. If
the estimator is s-biased (per. 4-2.3), then this
second moment is “variance + (bias)?”. If the
estimator is s-unbiased (zero bias), s-efficiency
is measured by the variance of the estimator.
For a fixed sample size, the smaller the vari-
ance of the estimator, the more s-efficient it
is.

There is a lower bound to the variance of
an estimator-the Cramer-Rao lower bound.
s-Efficiencies often are measured relative to
the Cramer-Rao lower bound; if this s-effi-
ciency is 100 percent, that’s as s-efficient as
one can get. Most estimators used in reliabili-
ty work are quite s-efficient.

s-Efficiency is perhaps the most desirable
property of an estimator. It tells you how
good or bad your estimate is likely to be.

422 s-CONSISTENT ESTIMATORS

An s-consistent estimator is one which
“approaches” the true value as the sample size
“goes to infinity”. The reason for the quote
marks is that the phrases are loose expressions
of complicated mathematical concepts; for a
more exact definition, consult a textbook.
s-Consistency is a very desirable attribute of
an estimator. Virtually all estimators in use in
reliability work are s-consistent.

423 s-BIAS

s-Bias is the difference between the
s-expected (mean) value of an estimator (for a
fixed sampling plan) and the true value. It
enters the measure of s-efficiency (par. 4-2.1);
as long as the s-bias is less than about 50 per-
cent of the standard deviation, the contribu-
tion of the s-bias can be neglected. Being s-un-
biased is nice for theoretical work, but it is
vastly overrated as a criterion for goodness of
reliabilitx\ estimators. The main reason for this
is that if § is an s-unbiased estimator of 0, f(8)
is an s-biased estimator of f(0) unless f(+)is a
linear function. The most widespread misun-
derstanding of this principle is involved in the
estimate for tie variance of an s-normal distri-
bution. The S? statistic, S? = SS/(N-1)

4-1
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--rhere SS is the sum of squares of deviations
about the sample mean, and N is the number
of items in the sample—is an s-unbissed esti-
mator of 02 (the true value of the variance),
but S is an s-biased estimator cf 0. (The
square root function is not linear.) Another
example is 1/, the reciprocal parameter for
an exponential distribution. An s-unbiased es-
timator for 1/A is the sample moan, but the
reciprocal of that estimator is an s-bissed esti-
mator of A. (The reciprocal is not a linear
function.)

How is an engineer to know what func-
tion of the parameter ought to be s-unbiased?
He doesn't. In general, reliability engineers
can ignore s-bias of estimators; they need on. ;
be concerned about s-efficiency.

4-2.4 UNCERTAINTY

Any estimates of parameters ought to be
accompanied by an estin:ate of the uncertain-
ty involved. Two common methods of indi-
cating uncertainty are the covariance matrix
and s-confidence intervals, The reliability en-
gineer need not know how to get them, only
how to use them.

4-3 TESTS OF sSIGNIFICANCE

The most important thing about s-signif-
icance is what it isn't; it is not ‘“‘engineering
importance”. s-Significance is concerned with
tests that are run to see if one thing is differ-
ent from another. A statistical model is for.
mulated and measurements (tests) are made;
on the sample(s) to measte the difference in
the items of the sampl.. For example, does
heat-treating method A produnc Letter fatigue
properties than heat-treating nietixna 1: Usu-
ally the statistical hypothesis is made that
there is no difference. Then the statistical dis-
tribution of the test statistic is calculated. In
the example, the test statistic might be the
difference in average fatigue-strengths at 107
cycles of stress. The value of that test statistic
for the sample(s) is measured and compared
with the distribution. If a value as large as
observed would occur only 0.1 percent of the
time or less, the effect (difference) is not like-
ly to have been a chance observation, but is
likely to be due to one method being better
than another. If the value of the test statistic

4-2

for the sample(s) would be exceeded 40 per-
cent of the time, then it is not likely that one
method is better than another. The percen-
tage chosen (0.1 percent, 40 percent, etc.) is
called the ssignificance level. In practice, en-
gineers want the effect to be s-significant at a
20 percent level or less.

Regardiess of the outcome of the statisti-
cal test, the engineer wants the effect to be of
engineering importance. It is possible to take
a sample small enough so that no matter what
the actual difference is, it will not be s-signifi-
cant because the uncertainties due to too few
data overwhelm all other considerations. On
the other hand, it is also possible to take so
much data that the difference will be s-signifi-
cant, no matter how small the effect. Tests of
s-significance suffer from being equivalent to
point estimates. Engineers would rather esti-
mate the difference between two methods
and the vuacertainty in that estimate. This pro-
cedure is discussed in par. 4-4 on s-confidence
statements.

4-4 s-CONFIDENCE STATEMENTS

As with s-significence there is an impor-
tant difference between the engineering and
statistical concepts. s-Confidence i:. a statisti-
cal concept with a very special, exact mean-
ing. Don't use the concept without under-
standing that meaning.

An example statement is a good way to
understand the concept.

‘““The true improvement in fatigue
strength (method B over method A) lies
hetween —1.7 and +10.9 kips/in.? at a
90 percent s-confidence level.”

The 90 percent s-confidence level means that
90 percent of the times that ons goes through
the statistical manipulations ss done for this
example, the resulting statement wili be cor-
rect; 10 percent of the time it will be wrong.
The -1.7 and +10.9 kips/in.2 are called the
s-confidence limits.

For a given set of sample measurements,
the higher the s-confidence level is, the wider
the s-conf.der:~~ limits will be.

An engineer might look at the s-confi-
dence statement and say, “Even if the im-
provement in fatigue strength were as good as
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the top limit, it wouldn't be too useful. We
need an improvement of at lesst 20 kips/in.2”
There is probably little point, then, in running
more tests. However, if he says, “All we need
is 5 kips/in.2 improvement,” he undoubtedly
would want to run more tests to pin down the
improvement more exactly.

s-Confiderice is not engineering confi-
dence, although the concepts are related.

45 GOODNESS-OF-FIT TESTS

When a particular distribution is assumed
to represent a set of data, a natural question
arises, “‘How good is the fit of the distribution
to the data?” There are several statistical tests
that can be performed. Some are peculiar to
the distribution itself, and some can be ap-
plied to any distribution. The two most popu-
lar ones for application to any distribution are
the Chi-Square and the Kolmogorov- Smirnov
tests.

A goodness-of-fit test is equivalent to a
test of s-significance (par. 4-3) and has all the
difficulties associated with s-significance tests.
That difficulty-briefly--is that it is possible to
take so few data that it is impossible to reject
any distribution, and it is possible to take so
many data that every distribution will be re-
jected.

What is needed is a test for fit that an-
swers an engineering question, such as, “If I
use this distribution for interpolation, how
bad will my answers be?”’ Unfortunately, such
tests are not available. Therefore, a consider-
able amount of engineering judgment must be
used in reckoning goodness-of-fit.

4-6 SAMPLES AND POPULATIONS

In practical situations the population,
about which statistical inferences are to be
made, is determined by the method in which
the sample for testing was drawn. The use of
historical data is fraught with extreme danger
this way. For example, electrolytic capacitors
that were derated to 50 percent or less were
more reliable than those derated to, say, 70
percent of their rating; results like that were
obtained in reliability studies of armed forces
equipment in the 1950’s. Was this sample
taken from all kinds of designers, or was 1t
taken from only a subset of designers? For

AMCP 708-197

example, if the designers whose equipment
was measured were such that conservative de-
signers put electrolytic capacitors in cool
places and careless designers put them in hot
places, the population of designers does not
include those who put very derated electroly-
tics in hot places nor thoie who put mildly
derated ones in cool places.

Probably the most controversial situation
of samples vs populations concerns the rela-
tionship of cigarette smoking to health. Sam-
ples were taken of smokers and nonsmokers,
etc., but from what population were the peo-
ple a statistically random sample?

A more frequently occurring difficulty is
testing a small sample of parts and then im-
plicitly hoping that the small sample repre-
sents the population which will be obtained
from several suppliers month after month.

For really important tests, the engineer
has to decide what are the possibly important
effects and then find an appropriate statisti-
cian to help with sampiing.

4-7 iFR AND DFR DISTRIBUTIONS

Sometimes it is difficult to determine a
distribution of lifetimes of a unit. It may,
even then, be feasible to decide that the fail-
ure rate of the unit is always increasing (IFR
- Increasing Failure Rate) or always decreas-
ing (DFR — Decreasing Failure Rate). If a dis-
tribution is known to be IFR or to be DFR,
bounds can be put on the failure behavior.
One of these bounds is provided by the Con-
stant Failure Rate distribution and its associ-
ated relationships.

For example, the Weibull and Gamma dis-
tributions (see Table 3-1 for notation) are
IFR when the shape parameter 8 is greater
than 1 and DFR where it is less than 1. Both
have constant failure rates when the shape
parameter is 1. The s-normal distribution is
IFR; the lognormal distribution is neither (at
first the failure rate increases, then it de-
creases).

A general discussion of IFR and DFR dis-
tributions is given in Ref. 1; DFR distn-
butions are discussed in detail in Ref. 1.
Bounds on rehiahility parameters are given in
Refs. 2-5. Refs. 6, 7 discuss the conditions
under which systems:

4-3




» Downloaded from http://www.everyspec.com

AMCP 705-197

1. Made up of IFR elements, are them-
selves IFR.

2. Made up of DFR elements, are them-
selves DFR. Re!. 8 shows how to test a sam-
ple to see if it comn<: from a dis'ribution with
a monotonic failure rate, and if so, whether it
is IFR or DFR.

Even though this matnematical material is
available in the literature, it is not clear how
valusble it can be to the reliability engineer.
An experienced statistician ought to be con-
sulted before applying any of the results. The
reliability engineer must also use his judgment
in deciding how much less stringent the re-
strictions for this theory really are, than just
to blithely assume one of the conventional
distributions.

Generally speaking, the decisions about
hardware will not be radically different re-
gardless of which of several distributions is
chosen to represent the life of the units. If
that conclusion is not true, then the engineer
is in serious trouble because he needs more
information than he has.
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CHAPTER 6§ SOME ADVANCED MATHEMATICAL TECHNIQUES

5-0 LIST OF SYMBOLS

n = number of states
$- = denotes statistical definition
S, = system-state i
t = time
u = time at which in-repair unit fails; re-
generation point
A, = transition rate from S, to S,

5-1 INTRODUCTION

The approach to reliability wherein transi-
tion distriLutions from one state to another
are all general is not tractable, because there
are no simple instants of time at which past
histury can Le ignored. The best that can be
done in the general case is to give a compli-
cated algorithm for calculating probability of
transition at any tin'e. Therefore, everyone
uses simplifying assurn ptions of some sort. A
few of the mathematical techniques tnat are
useful in the simplificaticn process are mein-
tioned here. Ncne were discovered or invent-
ed for reliability analvsis; ihey are well-known
(to mathematicians) techniques Refs. 1 and 2
give more defails cn many of them. Hand-
books such as Ret. 6 also show these and
other techniques; Ref. 7 is an example of a
textbook which teaches some of these tech-
niques,

52 MARKOV PROCESSES

There are several kinds and generalizations
of Markov processes, ut only the most sim-
ple process will be discussed here. For more
details, see Refs. 1 and 2 and the Bibliography
at the end of Chapter 1.

6-2.1 SYSTEM STATE

The system is presumed to be in one of a
set of states and can go from one state to
another. The state of a system is a description
of its condition. The analyst can choose the
way a state is characterized. Consider this
example. Suppose a system consists of three
subsystems, each of which- can be adequatoly
described by one of the following four condi-

tions: Good, Degraded, Failed waiting for re-
peair, In repair. Further suppose that the state
of the system is characterized adequately by
giving the states of each of the three subsys-
tems. Then there are 4 X 4 X 4 = 64 possible
states of the system. A state of this system
consists of the specification of the states of
each of its three subsystems, e.g., Good, In
repair, Good, When the state of a subsystem
changes, the state of the system will change.

§-2.2 MARKOV CHAINS

Suppose the states of the system are speci-
fied, e.g., S,, ..., S,, then there are . states. It
is presumed that the probability of going
from one state to another depends only on
those twe states, and no others; past history is
wiped out. For any two states, the transition
rate is a constant. The transition rate A, from
state S; to state S; corresponds to a fuilure
rate for an exponential process in that it is a
ratio of a pro“ability density function to a
Survivor functicn. Many of the A, for a sys-
tem are ususl.y zero, because certain transi-
tions are not possible, by the very nature of
the particular system. In the example in par.
5-2.1, just repaired subsystems might always
be Good, never Degraded. Then, a subsystem
could never go from “In-repair” to “Degrad-
ed”, but it could go from “In-repair” to
“Good” or from “Degraded” to “In-repair”.
The A;; car. be put in a matrix form.

Many special cases have been worked out
in the literature. Refs. 3-5 are likely sources
of material.

Considerable simplification of the theory
is possible when only the steady-state behav-
ior of the system is of concern, not the tran-
sient (start-up) behavior.

In practice, the number of system states
must be severely limited in order for the anal-
ysis to be tractable.

5-3 LAPLACE TRANSFORMS
The Laplace transform is perhaps the

most popular transform for engineers; they
use it often in solving differential equations.

5-1
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The Laplace transform is very closely related
to the Laplace-Stieltjes transform and to the
Fourier transform. The Moment Generating
function and the Characteristic function are
also related to the Laplace transform, al-
though statistics texts seem rarely to point
this out. (The Characreristic function is, for-
mally, the Fourier transform; and the Mo-
ment Generating function is, formally, the
Laplace transform.) The Stieltjes form of the
Laplace transform has fewer difficulties with
“existence’” than does the Laplace transform,
although in practical reliability work, “exist-
ence” of integrals and pdf's is rarely a diffi-
culty. In the remaining discussion, the phrase,
Laplace transform, includes all the related
transforms and functions.

The Laplace transform changes differenti-
ation and integration into multiplication and
division by the transform-variable. In reli-
ability analysis, another of its properties is
even more important. The Laplace transform
of the sum of several s-independent random
variables is the product of the individual
Laplace transforms of the random variables.
Thus convolution is transformed to multipli-
cation.

When the equations of the system are ex-
pressed in Laplace transforms, the steady
state (¢t -+ o) behavior can be found easily
without inverting the transforms.

The Laplace transform of the answer in a
reliability problem often can be obtained in a
closed form, albeit usually unwieldy. The dif-
ficulty arises because inversion is rarely fea-
sible in closed form; then numerical inversion
must be used.

54 REGENERATION POINTS

The big advantage of assumir.g constant
transition rates, is that every time-instant is a

repaneuﬁsn (renewal) poini, Statistically

. the system (when in a particular

sno memory as to “.ow long it has

bee .n that state; each instant is just like
every other instant.

If general statistical distributions are used,
this is no longer simply the case. The trick in
an analysis is to find (or invent) some time
instants which have this regeneration prop-
erty; once you know that the system is at this
time instant, its past history can be forgotten.
One way of finding suitable regeneration
points is to introduce an extra time variable
to help describe the .tate of the system.

For example, suppoie a system of two
units is in one of the follo-ving three states:

1. One unit operating, other in-standby

2. One unit operating, other in-repair

3. One unit in-repair, other waiting-for-
repair.

The unit is in state two at time = ¢; intro-
duce the time = u at which the in-repair unit
fails; at time = O the operating unit was put
into operation. With u as an extra variable,
time = u is a regeneration point; the state
probabilities do not depend upon the history
of the system prior to u.

Of course, the introduction of extra vari-
ables complicates the analysis, but, at least,
some equations can be written down. This
supplementary variable technique is used in
the literature, e.g., Ref. 5, in order to “solve”
reliability problems where random variables
have unspecified distributions. Virtually all
problems when stated this way will involve
the sums of s-independent random vanables;
so Laplace transforms will ordinarily be used
in the solution of the proulem (see par. 5-3).

Ref. 7 discusses renewal theory in detail.

(N
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CHAPTER 6 CREATING THE SYSTEM RELIABILITY MODEL

6-0 LIST OF SYMBOLS

k-out-of-r..F = special kind of system,
see par. 6-3.2
k-out-of-n:G = special kind of system,
see par. 6-3.2
Mean Time to Failure
Mean Time Between
Failures
denotes statistical defi-
nition
t = time, time-to-failure
XY, ZABS,. = events or elements ona
dependency diagram
W¥; = subsets of ¥; ¥ is any
event or set
V' 0", ¥(,) = events related to w; ¥
_ is any event
¥ = not ¥ complement of
¥; ¥ is any event or

MTF
MTBF

8-

set
AND, OR = logical operators (AND
=+ MN;0R V)
A,9,0,0 = symbolic elements for

a dependency diagram;
see par. 6-2.3.1

6-1 INTRODUCTION

In order to compute the reliability meas-
ures of a system, it is necessary to develop a
reliability model of the system. A reliability
model consists of some combination of a reli-
ability block diagram or Cause-Consequence
chart, a definition of all equipment failure
and repair distributions, a definition of the
up-state rules, and a statement of spares and
repair strategies. This chapter is written from
the point of view of reliability diagrams, be-
cause historically the material has been pre-
sented that way.

A reliability block diagram is obtained
from a careful analysis of the manner in
which the system operates, i.e., the effects on
overall system performance of failures of the
various parts that make up the system; the
support environment and constraints, includ-
ing such factors as the number and assignment
of spare parts and repairmen; and the mission.
Careful consideration of these factors yields a

set of rules (which will be referred to as “up-
state rules’”) which define satisfactory opera-
tion of the system (system up) and unsatisfac-
tory operation (system down), as well as the
various ways in which these can be achieved.
If a system operates in more than one mode, a
separate reliability diagram must be developed
for each one (Refs. 1 and 2).

A considerable amount of engineering
analysis must be performed in order to devel-
op a reliability model. The engineer proceeds
as follows.

(1) Develop a functional block diagram
of the system based on his knowledge of the
physical principles governing system opera-
tion and behavior.

(2) Develop the logicai and topological
relationships between functional elements of
the system.

{3) Use the results of performance evalu-
ation studies to determine the extent that the
systemn can oncrate in a degraded state. This
information might be provided by outside
sources.

(4) Define the spares and repair strate-
gies (for maintained systems). The spares
strategy defines the sparvs allocated to the
system and, in the case of multiple failures,
defines the order in which spares are to be
used. The repair strategies define the number
of repairmen and the order in which they are
to be used in the case of multiple failures.

This chapter presents a description of the
engineering analysis procedures, mathematical
block-diagramming techniques, and other pro-
cedures used to construct reliability models.

6-2 ENGINEERING ANALYSIS
6-2.1 INTRODUCTION

Before the reliability model can be con-
structed, the system must be analyzed. A
functional block diagram and a dependency
diagram, which define the logical and topolog-
ical relationships between functioi.al elemerts
and their inputs and outputs, must be devel-
oped. These diagrams can be developed for
electrical, electromechanical, and mechanical

6-1
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systems — the underlying principles are the
same for all (Refs. 2 and 3).

Basically, the functional block diagram
must contain the following items:

1. A clear identification of all functions
and repetitive functions.

2. Input-output relationships between
functions. For electronic systems, this takes
the form of signal flow from input to outyut.
Usual and alternate modes must be shown.

3. A clear indication of where power
supplies or power sources are applied to the
system.

4. D.scription of switching arrangements
and the sequence in which alternate modes
are used.

The dependency diagram schematically
represents the logical interdependencies of the
functional elements of the system and illus-
trates step-by-step how an input is processed
to produce the output signal or mechanical
action (Refs. 2 and 4).

Notes and attachments can be used to
provide more detailed information on a spe-
cific system than can be portrayed directly on
the dependency diagram. An alphameric code
ought to be established which correlates the
dependency diagram with the functional
biock diagram.

The reliability block diagram for the case
of reliability without repair can be derived
directly from the dependency diagram using
the techniques of Boolean algebra. For repair-
able systems, simple modifications that de-
scribe the spares and repair strategies must be
made to the basic block diagram,

6-2.2 FUNCTIONAL BLOCK DIAGRAMS

Functional block diagrams must be devel-
oped te provide descriptive coverage from
system to subassembly levels. The informa-
tion contained in thern and in the detailed
circuit and mechanical descriptions of the
system can be used to develop a reliability
model. The functional block diagrams, circuit
diagrams, mechanical descriptions, dependen-
cy diagrams, and reliability block diagrams are
related by means of an alphameric coding
scheme.

6-2

Notes and attachments to the functional -
block diagrams must (1) provide more-
detailed information than can be portrayed
directly on the functional block diagrams, and
(2) describe functional relationships whose
complexity precludes direct listing. Typical
attachments to the functional block diagrams
include timing diagrams, switching rules, and
descriptions of complex interconnections be-
tween functions.

Several levels of functional block diagram
might be required. System-level functicnal
block diagrams show the relative locations of
the highest level functional elements in the
system, their interconnections, relation to the
external environment, power levels, and
points of access to external systems. Basic
system mechanical layout information (such
as physical boundaries) is superimposed on
the system functional block diagram.

Depending on the system being described,
several levels of intermediate functional block
diagrams might be required. The intermedi-
ate-level functional block diagrams are identi-
cal in structure and format to the system dia-
grams, but describe the system in greater de-
tail. When basic equipment layout informa-
tion 15 available, it is supe mposed on the in-
termediate-level block diagrams.

Many systems require several levels of
mechanical descriptions. At the overall cover-
age level, gross physical details are superim-
posed on the system block diagiam. At inter-
mediate levels, more-detailed physical features
are defined. This is important because hard-
ware boundaries are needed to specify equip-
ment configurations for which reliability must
be computed. The definition of physical con-
figuration is impertant when repairaole sys-
tems are being analyzed because the repair
times are a function of accessibility and ease
of handling, which are physically related
parameters.

The structure of the functional block dia-
grams and the physical descriptions depend
on the system. A tank, for example, has a
very well-defined physical structure and func-
tional block diagram. On the other hand, a
tropospheric-scatter communications system
has large, interconnected units dispersed over
a site area.
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6-2.2.1 Discrete vystems

A discrete system has precisely defined
mechanical and electrical boundaries, and it
occupies a limited, well-defined volume, Ex-
amples of such systems are rifles, artillery
projectiles, tanks, and helicopters. A function-
ai and mechanical description of a discrete
system usually can be prepared in a straight-
forward manner. The reliability block dia-
grams usually are derivable readily from the
descriptions.

A traditional radio receiver is an example
of a simple discrete system; see Fig. 6-1 (Ref.
5). The cystem-level functional block diagram
describes the functional elements of the sys-
tem anA defines the signal flow and intercon-
nections between the functional elements. Ali
functio ial blocks are numbered and are keyed
to the blocks of the reliability model.

A more complex discrete system is the
infrared (IR) camera in Fig. 6-2 (Ref. 6). This
system contains mechanical, optical, and elec-
trical subsystems. These subsystems can be
completely described by functional block dia-
grams of different levels of complexity. For
example, the mirrors can be described by a
single level block diagram, while the IR detec-
tor may require several levels of functional
block diagrams and detailed circuit schematics
for a complete description.

A tank is an example of an even more
complex discrete system; it contains mechani-
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cal, electromechanical, and electronic com-
ponents and subsystems. Because of the way a
tank is structured, a simple functional block
diagram which places the functions in a sim-
ple geometrical order with a signal flow from
input to output cannot be drawn., The sys-
tem-level block diagram of a main battle tank
is shown in Fig. 6-3 (Ref. 7).

6-2.2.2 Dispersed Svstems

In a dispersed system the components are
dispersed over an area and often fit together
in a complicated way that regquires multiplex-
ing of signal paths and feedback. It may be
difficult to describe such a system with a
single set of functional block diagrams; a
more complex representation might be re-
quired.

A tropospheric-scatter system is a good
example of a dispersed system (Ref. 8).
Tropospheric-scatter transmission systems are
used to extend line of sight communication
systems by using atmospheric refraction to
transmit high-frequency waves beyond the
horizon. Direct transmission between two ter-
minal stations located beyond the optical
horizon is obtained by the scattering proper-
ties of the troposphere. Since the transmission
properties of the atmosphere randomly fluc-
tuate, many properties of a tropospheric-
scatter system are statistical. This complicates
the functional description of the system be-

AMPLIFIER “_" || SPEAKER

FIXED
I‘&';E?H"E; MIXER FREQUENCY }—4 DETECTOR AUDIO
AMPLIFIER
LOCAL
OSCILLATOR

Copynighted by McGraw-Hill Book Co., Inc., 1956. Reprint-
ed from Radio Electronics with perimission.

FIGURE 6-1. Radio Receiver Functional Block Diagram®
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FIGURE 6-2. Infrared Camera Functional
Block Diagram®

cause the properties of the transmission path,
which is external to the system hardware,
affect system reliability. Therefore, the trans-
mission medium also must be described in the
system functional block diagram.

A summary of the items making up a
tropospheric-scatter system functional de-
scription follows:

Geographical deployment plan
Station layout plan
System layout plan
Shelter layout plan
Antenna layout plan
Channeling plan
Frequency allocations plan
Equipment lists
. Tabulation of system and equipment
characteristics

10. Functional block diagrams of equip-
ment and systems at each station

11. Signal dependency diagrams

12, System interface diagrams

13. Individual functional block diagrams.

The reliability model for this system is
very complex. Several reliability models will
be required to compute system reliability and
the reliability of individual equipments.

RN P W

A System Layout Plan and an Equipment
Functional Diagram for one station are de-
scribed in Figs. 6-4 and 6-5.

6-2.3 DEPENDENCY DIAGRAMS
6-2.3.1 Definition of Terms

A dependency diagram pictorially defines
the logical, electrical, and topological inter-
relationships between the events and func-
tional elements in a system (Refs. 2 and 4).
The terms used in the previous sentence are
defined as follows:

1. The logical interrelationships between
functional elements are the rules governing
the interplay between input and output sig-
nals or forces. These rules can best be ex-
pressed by Boolean equations.

2. The electrical interrelationships de-
scribe the flow of electrical energy between
functions. A good example is a traditional sig-
nal flow diagram.

3. The topological relationships express
the geometric structure of the system. This is
very important because, frequently, the com-
ponents comprising a function are physically
located in different parts of the system, even
in different equipment cabinets. Therefore,
the system geometry must be carefully de-
fined.

The dependency diagrams can be very
helpful in deriving reliability block diagrams.
A reliability model for reliability without re-
pair can be derived directly from these dia-
grams using Boolean algebra techniques. In
simple systems, ordinary functional diagrams
are sufficient to derive the reliability model.
The dependency diagram can become very
complex for large systerns. Therefore, it
should be constructed at a system level which
permits the reliability model to be derived but
does not expand the diagram to the point
where it becomes cumbersome to use. A
dependency diagram would never be drawn at
the circuit schematic level, for example. The
dependency diagram requires standard for-
matting rules, which minimize the chance of
error when deriving the reliability model

6-2.3.2 Standard Formatting Rules
A standard set of dependency-diagram

l’
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formatting rules is required to show unambig-
uously the logical relations between system
functions. (This entire subparagraph is adapt-
ed from Refs. 2 and 4.) To be useful, the
formatting rules should be uriform, i.e., the
same set of symbols and rules must be usable
at all levels of system disclosure.

The basic symbolic elements of the de-
pendency diagram are described:

Aor V The triangle indicates the existence of
a dependency on another event. The
apex of the triangle points toward the
event which is depended upon.

o The circle placed on a dependency
line (in a particular column) indicates
the existence of functional element
represented by that column.

o The square represents an event or
multiplicity of events (action or avail-
able output) which results from the
proper operation of a specific group
of functional elements and the avail-
ability of specific events.

By use of these basic symbols, a de-
pendency diagram can be developed. The de-
pendency diagram symbolically illustrates the
interdependencies between the functional
elements and events in the system. The de-
pendency diagram mape the functional inter-
actions of a system ir.to a dependency struc-
ture.

In addition to the basic symbols, the de-
pendency diagram also makes use of:

1. Event entries (headings)

2. Functional element entries (headings)
3. Data rows

4. Notes and signal specifications

5. Procedure column.

All of these contain information which is use-
ful for the generation of reliability models.

The column headings list the name and
location of all events and functional elements
associated with the dependency diagram.
Each event and functional element is identi-
fied by means of an alphameric code.

The event entries can indicate:

1. Inputs from external equipment
2. Important internal events

6-8

3. Outputs to external equipment
4. Terminal events such as outputs from
recorder, PPI scope, or hesdphone set.

If the events are to be observed, such as at
test points, the point of observation is indi-
cated in the event entry column. If events are
to be measured, the points of measurement
are indicated. Specifications or descriptions
for the event are referenced by a number lo-
cated in a box at the base of the column head-
ing. The physical location of each functional
element and event is identified at the top of
each column. The combinatorial rules govern-
ing groups of events and functional elements
can be summarized in the headings.

A set of standard interpreting rules for
logical, mechanical, electrical, and topological
interrelationships between functional ele-
ments and events in a system must be used in
the dependency diagram. The distinction be-
tween topological, electrical, logical, and
mechanical considerations is crucial in the for-
matting of complex systems.

Topological relationships depict the physi-
cal interconnections between functional ele-
ments. Electrical interrelationships indicate
functional signal processing interactions be-
tween elements. Logical dependencies indi-
cate the Boolean relationships among func-
tional elements. Mechanical dependencies in-
dicate mechanical interactions between ele-
ments in a mechanical system,

The three basic symbols (triangle, circle,
square) are combined in various ways to form
the dependency structure. The resultant event
and the functional elements and dependencies
upon which it depends are connected by
means of the horizontal dependency lines.

There are nine standard rules for inter-
preting .he structure of the dependency chart
for reliability model derivation, i.e.,

1. I. a circle (functional element)
appears in a specific column several times, it
represents only one physical entity.

2. Only AND dependencies can be
depicted on a single dependency line.

3. Output events dependent upon a
specific functional element are placed to the
light of the symbol representing that ¢lement.
Input events to that element appear to the
left of the element.
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4. Both logical (in the Boolean sense)
AND and OR dependencies can be repre-
sented in the vertical direction.

5. The vertical lines demarking the
columns delimit physical bounds on the func-
tional (electrical and mechanical) inter-
dependencies. Several event boxes labeled
separately and drawn in the same vertical
column represent a group 2f signals which en-
ter the same physical term nal. If the events
ace drawn one each in a group of adjacent
columns, they represent signals that enter
different physical terminals of the same func-
tional element.

6. If separately labeled events are drawn
in the same columnr and a dependency triangle
is placed under each, the events represent
electrically (or mechanically) distinct signals,
even though th2y may be impoted at the same
physical point. (Distinct signals or forces are
separated by time as well as frequency.) If a
single dependency triangle is placed under the
group of events, they are electrically (mechan-
ically) similar.

7. A plus sign (+) on the dependency dia-
gram indicates that some group of functional
elements and events are related in a logical
OR fashion.

8. A small circle (O) or dot placed on the
dependency diagram above the square repre-
senting an event indicates that the functional
elements providing inputs to that event are
related in a logical AND fashion.

9. Dummy Events: If groups of events
are related in a complex manner that is diffi-
cult to describe using the listed rules, or if the
resulting descriptions are ambiguous, a

ANCP 708197

dummy even. can be used. All of the event
outputs feed as inputs to the dummy event.
The Boolean relation or logical rule governing
the interaction betwwen the elements is stated
in the column heading above the dummy
event and just above the box representing the
event.

These rules establish the dependency dia-
gram as a device for describing the topologi-
cal, mechanical, logical, and electrical rels-
tionships which govesn the cperation of a
system. A number of examples preseited to
iltustrate the application of these rules follow:

A. Simple Series Dependency. The sim-
ple series dependency for a single functional
element is shown in Fig. 6-6. The small circle
above the square (which represents the Z out-
put) indicates an AND series relationship be-
tween X, Y, and Z. This representation may
be extrapolated to a group of series functional
elements.

B. Parallel Inputs (Figs. 6-7 through
6-10). Several possible combinations can oc-
cur. The events A,, A,, and A, enter func-
tional block S through the same terminal or
different terminals, they are electrically
(mechanically) similar or electrically (mechan-
ically) different, and the event A,, depends
upon A,, A,, and A, in a logical AND or
iogical OR feshion. Eight different dependen-
cy diagrams can be drawn.

1. Identical Inputs, Same Terminal,
AND Dependency (Fig. 6-7). Standard rules
2,3, 5, 6, 8, and 9 apply.

A o
O—+4—o0—-A |@— AROW
"t
A COLUMN

FIGURE 6-6. Simple Series Dependency?
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2. Identical Inputs, Seme Terminal,
OR Dependency. According to Rule 7, a (+)
sign would be placed above the A; box be-
cause of the OR dependency. If tne logical
rule were combinatorial, the statement m (n),
meaning m of n, would be placed next to this
(+) sign.

3. Identical Inputs, Different Termi-
nals, AND Dependency (Fig. 6-5). Standard
rules 1, 3,4, 5,6, 8, and 9 apply.

4. Identical Inputs, Different Termi-
nals, OR Dependency. An OR sign (+) would
be placed above A, by Rules 7 and 4.

5. Different Inputs, Same Terminal,
AND Dependency (Fig. 6-9). Signals A, A,,
and A, are different electrically {frequency or
time wise). Rules 1, 2, 3, 5, and 6 apply.

6. Different Inputs, Same Terminal,
OR Dependency. An OR sign (+) weuld be
placed above A by Rules 7 and 4.

1. Different Physical Terminal, Dif-
ferent Inputs, AND Dependency (Fig.
6-10). A,, A,,and A, are different.

8. Different Physical Termingl Dif-
ferent Inputs, OR Dependency. An OR
symbol would be placed above A, .

C. Large Numbers of Functional Branch-
es in Paralle!l (Contractions). In this situaticn,
a functional element B interfaces with N
parallel branches, consisting of M elements in
series (Fig. 6-11(A)). The format of the
dependency diagram depends on whether or
not the branches are identical and whether or
not the functional elements within each
branch are identical. Several cases must be
considered:

1. All MN functional elements are
different.

2. All elements in a given branch are
identical, but each branch is different.

3. All elements in a given branch are
different, but each parallel branch is the same.

4. All elements are identical.

Under certain circumstances, when large
numbers of elements are involved, contrac-
tions can be used to simplify the dependency
diagram. Examples follow:

Case 1: All MN elcments are different.
No contractions are possible.

Case 2: All elements in a given branch are
identical, but each branch is different. The

6-12

branch can be contracted by means of a
multiple column contraction, Fig. 6-11(B). E
represents a functional block composec of F,
G, and H in series. E and its composition are
described in the column healding. The
resultant dependency disgram is Fig. 6-11(C).

Case 3: All elements in a perticular
branch are different, but all branches are iden-
tical. The multiple row contraction can be
used, but not the multiple column contrac-
tion,

Case 4: All elements in all rows are iden-
tical. A further contraction is possible. This is
called the multiple row contraction and is
illustrated in Fig. 6-11(D). The N in the lower
right hand comer of the event box indicates
the number of parallel branches that are
represented. This contraction is only possible
when all the D,, cutputs are impressed upon a
single functional entity.

6-2.3.3 Exaraples

Several examples illustrate the wide varie-
ty of systems whose operation can be repre-
sented by dependency diagrams:

1. A simplified tropospheric-scatter
system (electronic)

2. A relay (electromechanical)

3. A packaged speed reducer (mechani-
cal).
A block diagram and dependency chart are
given for each system.

A. A Simplified Tropospheric Scatter
System (Electronic). The functional block
diagram of the receive functions of a tropo-
spheric scatter system is given in Fig. 6-12 and
its dependency diagram in Fig. 6-13 (Refs. 2
and 8). The dependency diagram is drawn at
the system level for simplicity. Diagrams also
can be drawn for each of the functions. The
functional block diagram is only one of the
several descriptive techniques required fcr a
tropospheric scatter system; however, a de-
tailed system description which includes geo-
graphical deployment plan, station, layout
plan, system layout plan, etc., is not present.
ed here.

B. A Relay (Electromechanicat). The
functional block diagram of a relay 1s shown
in Fig. 6-14 anc its dependency diagram is
shown in Fig. 6-15 (Refs. 2 and ?). 1 he relay
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FIGURE 6-14. Functional Disgram of a Relay®

dependencv diagram describes an action-at-a-
distance force, the electromagnetic field, and
the mechanical action of the contacts. The
dependency structure readily can be used to
represent mechanical and action-at-a-distance
forces and can, therefore, be used to describe
a wide variety of systems.

C. A Packaged Speed Reducer (Mechani-
cal). A packaged speed reducer is an example
of a mechanical system (Ref. 10). Packaged
speed redurers are spesd reduction gear trains
that are assembled at the factory. Their use as
off-the-shelf units results in considerable
savings of time and money. The cutput, in
this case, is a rotation of the output shaft.
The output speed of rotation is related in an
exact way to the speed of rotation of the in-
put shaft by the gear arrangement. A pack-
aged speed reducer is shown in Fig. 6-16 and
its dependency diagram in Fig. 6-17.

63 DEVELOPMENT OF RELIABILITY
MODELS

6-3.1 INTRODUCTION

The development of a rehability model 1s

6-20

a complex process which involves the struc-
ture of the system, up-state rules, the param-
eter to be computed, the computation
me 10d, and the repair and spares sirategies.
As a result of these interactinns, the reliability
model is not a fixed entity, even for a specific
system. Specifically, a reliability model con-
sists of some or ali of the following:

1. Reliability block diagram(s)

2. Definition of the up-state rules

3. Failure and repair rates of all func-
tional elements

4. Definition of repair strategies

5. Definition of spares allocation and
strategies.

The manner in which a reliability model
can be structured is discussed in detail in the
paragraphs that foliow.

6-3.2 DEFINITIONS

Before proceeding with a detailed dis-
cussion of the derivation of reliability models,
mathematical definitions of reliability with-
out repair, reliability with repair, insianta-
neous availability, steady state availability,
and mean time to failure (MTF) must be de-
veloped. These definitions are presented along
with several other useful definitions, as adapt-
ed from Ref. 2.

1. Reliability Withcut Repair. The
s-reliability without repair at time ¢ is defined
as the probability that the system will not fail
(will perform satisfactorily) before time ¢, as-
surning that all components are good at t =0
(the beginning of the riission). The s-reli-
ability vs time curve has a value of 1 at t =0
and monotonically decreases for increasing
values of t.

2. Reliability Witn Repair. The s-reli-
ability with repair of a system is defined as
the probability that the system will not fail
before time t, given thac all components are
good at ¢ = {), but vith the provision that
redundant items which fail are repaired. For a
1-unit system or & system made up of units in
saries, the s-relishility with repair is the same
as reliability withou! repair, since the failure
of cne unit is considered as a system failure
and, hy definition of s-reliability, the system

e
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Output Shaft is not permitted to go from a dovm-state to
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' Ant:- function of time begins at 1 for ¢t - 0 and
v 0 back- . .
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Specer sl [Ter] S 3 N curve is determined by the failure and repair
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FIGURE 6-16. Packaged Speed Reducer'
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FIGURE 6-17. Packaged Speed Reducer Dependency Diagram

means that if repair is not allowed to take
place on any of the items, the instantaneous
availability is equal to the reliability without
repair, because the only way the system could
be up at the instant ¢ under these circum-
stances is for the system to be up at ¢t = 0 and
remain up until ¢. The shape of the instanta-
neous availability curve depends on the types
of failure and repair distributions the lowest
level items are assumed to have.

4, Stead:-state Availability. The
steady-state aailability of a system is the
asymptotic value of the instantaneous avail-
ability and is defined as the probability that
the system is up at any given point in time
(but after a sufficiently long time so that
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steady-state is achieved). The steady-state
availability is a constant and is not a function
of time. Under the assumption of exponen-
tially distributed times to failure and times to
repair, the instantaneous availability mono-
tonically decreases from a value of 1 to the
steady-state availability and hence the steady-
state availability under these circumstances is
well defined and can be found readily.

5. Mean Time to Failure (MTF). The
MTF of a system is defined as the mean time
to system failure. This definition is valid for
nonrepairable systems and for repairable
systems. The MTF can be obtained by inte-
grating the reliability funct‘on (without repair
or with repair) from 0 to oo, assuming that the
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integral exists. In this concept, once the sys-
tem fails, it is dead and cannot be repaired.

It is important not to confuse the MTF
with the MTBF (mean time between failures).
MTBF may not be a workable concept for a
particular system ard may not be readily
computed for complex repairable systems.
For piece parts which are discarded after fail-
ure or for items that are restored to their orig-
inal conditions and used as new spares, MTF
is the appropriate concept.

6. Equipment. The term equipment
will be used to designate an element of a
system whose failure and repair characteristics
are considered as those of a unit and not as a
collection of smaller elements.

7. a.  Up. An equipment or system is

up if it is capable of performing its function.

b. Degraded. An equipment or

system is degraded if it performs its function,
but not well.

8. Down. An equipment or system is
down if it is incapable of performing its func-
tion,

9. Design Redundancy. A system has
design redundancy with respect to a given set
of equipments if the system is up with only a
part of the set in operation, i.e., the extra
equipments are solely for the purpose of im-
proving the reliability and availability charac-
teristics of the system.

10. On. An equipment which is up and
in operation is on.

11. Idle. An equipment which is up and
not in operation, i.e., being held in standby is
idle.

12, Block. A Block is a grouping of n
identical equipments. The reliability of the
grouping depends only on the number of
equipments which are up in the block and not
on which equipments in the block are up.

13. Sections. A Section is an s-indepen-
dent grouping of equipments within a system.
A system is divided into sections when the
number of system up-states is so large that
computer calculations are difficult. For ex-
ample, calculation of system MTF with repair
requires an inversion of the state matrix. If
the computer available to the analyst cannot

AMCP 708-197

handle a matrix, the analyst must subdivide
the system into two or more separate sections
and compute s-reliability with repair for each.
The system s-reliability with repair is the
product of the section s-reliabilities; the MTF
is computed by numerically integrating the
system s-reliability.

14. A k-out-of-n:G-system has n compo-
nents and is Good (up) if and only if at least k
of them are Good (up).

15. A k-out-of-n:F-system has n compo-
nents and is Failed (down) if and only if at
least k of them are Failed (down).

6-3.3 DERIVATION OF A RELIABILITY
DIAGRAM

The process of deriving a reliability block
diagram (for s-reliability without repair) from
a detailed system description is a complex
process that involves many factors. This
process must be analyzed to establish stand-
ardized procedures which form the basis of a
formal mathematical technique. The analysis,
using a part of a tropospheric scatter system,
is described in the paragraphs that follow
(Ref. 2).

Fig. 6-12 illustrates the equipment config-
uration for the receive function of a tropo-
spheric station. Fig. 6-13 is the dependency
diagram and Fig. 6-18 is the reliability dia-
gram for the system in the particular mode
being analyzed. The tropospheric system is
complex and c2n operate in several modes.
Each mode has a different reliability diagram.
The possible modes are:

1. Voice Set Group output consists of
outputs from 14 to 24 physically available
channels of which nine or more must be up.
(This statement on the dependency diagram
implies two reliability diagrams.) If more than
nine Voice Sets are up, the reliability diagram
shows them in parallel. If nine Voice Sets are
up, the reliability diagram shows them in se-
ries.

2. The output from any specific voice set
functionally depends on that particular voice
set AND on the output from any of the 24
Channel Filter outputs AND on the output
from “Engine Generator Set 1 OR Engine
Generator Set 2". (The parallel group of
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Voice Sets is in series with the parallel group
of Channel Filters and the parallel group of
Engine Generator Sets.)

3. The Channel Filter outputs function-
ally depend on the corresponding Channel Fil-
ters AND on the Demodulstor (via the
Demodulator output) AND on the output
from “Generator Set 1 OR Generator Set 2”.
(The parallel group of Channel Filters is in
series with the Demodulator and the parallel
group of Engine Generator Sets 1 anc 2.)

4. The Demodulator output depends on
the Demodulstor Function AND on the Com-
biner series circuit output. The Combiner
total output consists of an outpui via “Com-
biner Gain 1 AND 2” OR “Combiner Gain 3
AND 4”. Both outputs via “Combiner Gain 1
AND 2” OR “Combiner Gain 3 AND 4" func-
tionally depend on the Combiner series cir-
cuits (AGC and Summing Network) and Com-
biner Gain 1 AND 2 AND 3 AND 4, respec-
tively. On the reliability diagram, the Demod-
ulator is in series with the AGC and Summing
Network which are in turn in series with Gain
1 AND 2 in parallel with Gain 3 AND 4.

5. Examination of the dependency dia-
gram from this point to the system input re-
veals two chains of simple AND dependencies
which are in parallel with each other. The first
series chain consists of:

a. Received wave 1 (horizontal AND
vertical component)

b. Antenna 1 (horizontal AND verti-
cal feed)

c. Duplexer 1

d. Full polarization diversity, full
space diversity®

e. Full polarization diversity and de-
graded space diversit,

f. Degraded polarization diversity
and full space diversity

'In polarization diversity, the transmit-
ting and receiving antennas have dual feed
horns. The wave is simultaneously transmitted
with both horizontal and vertical polarization.
In space diversity, the same wave is transmit-
ted simultaneously over several physically dis-
tinct paths. Degraded diversity means thai
only one polarizaticn direction or propaga-
tion path is operable.
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g. Degraded polanzation diversity
and degraded space diversity.
Each of these modes can operate with or
without Orderwire?. In this example, the case
of full polarization diversity and degraded
space diversity with up Orderwire is con-
sidered.

The reliability diagram can be derived
from a simple set of logical statements im-
plied directly by the dependency diagram.
The set of logical statements follows and the
effect on the reliability diagram is given in
parentheses:

1. System output consists of output
from Orderwire circuits and Voice Set
Groups. (Orderwire circuits AND Voice Set
Groups are in series.)

2, Orderwire output functionally de-
pends on Orderwire circuits AND Service
Channel Line Equipment output AND
Demodulator circuit output AND ouptut
from “Generator 1 OR Generator 2, (Order-
wire vircuits are in series with Service Channel
Line %qguipment and Demodulator and the
paraii . zroup of Generator Set 1 and 2.)

r

i, The Voice Set Group output depends
o/ 4 e outputs from any of the Channel Fil-
tiv,, the Demodulator, Summing Network,
A0 Network, and the output from either of
ihe Receive Channels. The Receive Channels
each consist of a series grovping of functions.
Receive Channel 1 consists of:

a. Received Wave 1 (horizontal AND
vertical component)
b. Antenna 1 (horizontal AND verti-
cal feed)
Duplexer 1
Front-end 1
Front-end 2
Receiver 1
Receiver 2
Combiner Gain 1 AND 2,

The second Receive Channel consists of:

a. Received Wave 2 (horizontal AND
vertical component)

b. Antenna 2 (horizontal AND verti-
cal feed)

Fm e Ao

2An Orderwire Channel allows station
operators to communicate with each other.

-t
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Dupiexer 2

Front-end 3

Front-end 4

Receiver 3

. Receiver 4.

(The Channel Filters are in parallel. This
perailel grouping is in series with the Democu-
lator, Summing Network, and AGC Network.
These, in turn, are in series with the parallel
comhination of two Receive Channels.)

4. These two series chains of functions
are in series with the output from Engine
Generator Set 1 OR 2. (The parallei combi-
nation of Engine Generator Set 1 AND 2 is in
series with the rest of the system.)

®mmeap

This analysis illustrates that the informa-
tion containud in the dependency diagram can
be used to derive a reliability block diagram
for the case of s-reliability without repair. To
summarize the previous discussions, the mini-
mum information elements required for de-
riving a rel ability block diagram are:

1. A dependency chart that clearly indi-
cates the interdependencies between function-
al elements and events

2. A quantified definition of the system
output

3. A statement of rules defining the
system up-state.

3-3.4 MATHEMATICAL DERIVATION OF
A RELIABILITY DIAGRAM

6-3.4.1 Basic Concepts

In this paragraph a simple example of how
a reliability block diagram can be derived
from a dependency diagram is presented.

Consider the dependency diagram in Fig.
6-19. A Boolean equation (Ref. 11) for each
dependency line can be written as follows:

ANS = 7, +2Z, (6-1)
Z, =A-K
Z, =Z,0
Z, =2, A (6-2)
Z4 =C+Zg
Z,-P-Q

By means of a series of substitutions, a
Boolean function for the system can be gener-
ated in terms of its equipments. The steps are:
ANS=A-K+Z, ‘B
=A-K+(Z,-A) *'B
=A*K+[(C+Zg) A)*B (6-3)
=A*K+[(C+P*Q)+A)'B
=A*A+B+[A+(C+P- Q)]
This function, when properly simplified :d
factored, forms the basis for the reliability
block diagram. The factored form is:

ANS=A-[K+B-(C+P*Q)] (6-4)

2 |kl 2z |z ANS

FIGURE 6-19. Simple Dependency Chart?
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which is obtained by factoring A. The reli-
ability block diagram corresponding to th’
tree is shown in Fig. 6-20.

6-3.4.2 A Complex Example

This paragraph explains in detail how a
reliability model can be generated for a com-
plex system for the case of s-reliability with-
out repair; it is adapted from Ref. 2. The
system to be considered is the tropospheric
scatter communications system described pre-
viously (Fig. 6-12).

The reliability model can be generated by
writing a Boolean expression for each depend-
ency line. For example, if the dependency
line shows that Z depends on A AND B, the
Boolean equation is Z = A ¢ B; similarly, if Z
depends on A OR B, then the Boolean equa-
tion is Z = A + B. This notation is used rather
than N (AND) and U (OR) in deference to
considerable custom in writing Boolean ex-
pressions.

In the tropo system, the parallel series
structure shown in Fig. 6-21 occurs. The
items C,, C,;, C3, . . ., Cy, are identical and

in standby. This situation also applies to the
D,, D,, ..., Dy, items. The outputC" is up
when 9 out of 14 C items are up and D" is up.
The output D" is up when 9 out of 14 D
items are up.

The Boolean statements for the tropo
system are listed. The symbol PS is a code for
parallel-series function and the statement
9(14) represents the up-state definition for
“9-out-0f-14”", The unprimed terms represent
equipments, and the primed terms represent
outputs, which will be eliminated as the ex-
pression for system output is developed. The
following general equations can be written for
the parallel grouping of C and D:

C" = PS(C,, <1,24),9(14) (6:5)
D" = PS(D,),, j=1,24), 9(14) (6-6)
C(;) = C(I) .D('I) P (6-7)
D, =Dy +E-P (6-8)

where E' represents the Demodulator output
and P’ represents the Power Supply output.

The Boolean equations for the tropo
system (Fig. 6-13) are derived in the following
manner:

in parallel; normally only 14 out of the 24 Z'=A-C" (6-9)
items are in operation, the remaining 10 being A =A+B ‘P (6-10)
K
O A o ¢—o0
Cc
L B8 |4
o I
FIGURE 6-20. Simple Reliability Model!
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B =B-E'-PF (6-11)
C" = PS(C,)), j=1,24),9%(14) (6-12)
Ciy =Cy* Dy * P (6-13)
D" = PS(D,),j=1,24) 9(14) (6-14)

D, =D, *E-P (6-15)
E =E-F' (6-16)
F =G+H (6-17)
G =1I1-J-K-P (6-18)
H =I-L'-M-P (6-19)
J =JN-P (6-20)
K =K-0 P (6-21)
L' =L-T- P (6-22)
M=M-U-P (6-23)
N =N+Q P (6-24)
O =0-R'-PF (6-25)
Q =Q-S:P (6-26)
R =R-Y,* P (6-27)
§ =8-Y, P (6-28)
T =T-V:P (6-29)
U=U-W-P (6-30)
V=v.y, P (6-31)
W =w-x P (6-32)
X =x:Y,-P (6-33)
Y, =Y, Y, (6-34)
Y, = Y, Y, (6-35)
Y, =Y, Y, (6-36)
W =Y, v, (6-37)
Y, =Y, Y, (6-38)
Yo = Y5V, (6-39)
Y, =Y, Y, (6-40)
Y, =Y, %, (6-41)
P =Y/ +Y,, (6-42)
Y = Y, (6-43)
Yy, =Y, (6-44)

_ . e
(:4‘
Substitvte Eq. 6-10: &
Z =A-B-P-C" (6-45)
Substitute Eq. 6-11:
Z =AB-E'-P-P-C" (6-46)
Since P’ - P'=P:
Z =A-B*E-P-C" (6-47)

Egs. 6-12, 6-13, 6-14, and 6-15 must be ana-
lyzed as a group. They are equivalent to the
following equations:

c" = PS(C,,,j=1,24),9(14)  (6-12)
Ciy = Cyy "Dy *E' - P (6-48)
These can be further reduced.
C" = BS(Cy, * Dyy,i=1,24),
9(14) *E' - P (6-49)
= PS(C,,,,j = 1,24), 9(14)
- PS(D,;,, j=1,24), 9(14)
“E'-P (6-50)
=C'*D'+E P (6-51)
where
C' =PS(C;,,j=1,24),9(14) (6-52) .

D'=PS(D,;,, j=1,24),9(14) (6-53)
C' and D' are subsequently treated as elemen-

tary items.
Substitute Eq. 6-51:

Z=A+*B*EP-C- D (6-54)
Substitute Eq. 6-16:
Z=A-B-E+F P -C +D" (6-55)

Substitute Eq. 6-17:
Z’=A*B*E-(G'+H)-P +C+D
(6-56)
Substitute Eq. 6-18:
Z'=A*B*E +(I*J K P +H
-P.C-D (6-57)
Substitute Eq. 6-19:
Z'=A+BE-P:C:+D
s{U*J K +P+I1-L+ M -PpP)

-

DA B PN

These equation: can be combined to generate
a Boolean function for tne system by a series
of successive substitutions in the expression
for Z'. Proceed as follows:

Given:

Zr = Ar R Cu (6-9)

6-30

(6-58)
Substitute Eqgs. 6-20 and 6-21:
Z'=\P'+(I*J'N P K
«O'-I-L +M+P) (6-59)
where
ASEAB*E-C-D (5-60)
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» Substitute Egs. 6-22 and 5-23:

Z=\+P-+(I*J*N-P-K

cO+I' LT -M-U +P) (6-61)
Substitute Eqs. 6-24 and 6-25:

Z'=\*P-(I*JNQ:P+K*0

*R'+I1LT-M-U+P)
(6-62)
Substitute Eqs. 6-26 and 6-27:

Z=\*P+(I*J*N*Q+S' P K
*O*R Y, +I'L-T*M
‘U - P) (6-63)

Substitute Egs. 6-28 and 6-29:

Z'=\*P-(I*J*N-Q*S+Y,+P
*K*O*R-Y,+I*L-T-V
“M-U-P) (6-64)

Substitute Egs. 6-30 and 6-31:

Z'=NP (1Y P Y, "I
+[*L*T-V-Y ‘M U
WP (6-66)

where
r=JN*Q*S+*K*+*0O*R
(6-66)
Substitute Eqs. 6-32 and 6-33:

Z=XNPo(rY,*P-Y, "I
+[*L*T* VY, *M-U
*W-X-Y, P) (6-67)

Substitute Eqs. 6-34 and 6-35:
Z'=NP o (r+Yy P Y, I+I
ca Y, Y Y, Yg P
(6-68)
where
a=LT VM U-W+X
(6-69)

Z'=NP (1Y, Y, P Y, 'Y,

cl+oac I Y, <Y Y, Y+ P
(6-70)
Supstitute Egs. 6-38, 6-39, 6-40, and 6-41:

Z'=XNeP (1Y, Y, «Yy P
*Yr Yetac oY, Y ¥y
* Y, Y, P) (6-71)

AMCP 708-197

Substitute Eq. 6-42:
Z'=N (Y + Y ) [r €
Y +Y)ta-& -1

(Y3 + Y] (6-72)
where
SR AR VAR O3B CRS 7
(6-73)
E=Y, Y, Yy ¥y 0 Yy,
, (6-74)
Substitute Eqgs. 6-43 and 6-44:
Z'=N (Y +Yy, ) [t 1€
Yy + Y )+ta & -1
* (Vi3 + Y3,

(6-75)
=A*(Y,3+Y,,) [KON1-1I
*(Y,;3+Y,, )+ KON2 -1

y (Y13 + Y14 )] (6‘76)
where KON1= 71+ € (6-77)
KON2= a -+ €, (6-78)

Upon factoring out the term (Y,5 + Y,,) * [,
one has
Z'=N (Yt Y )1
* (KON1 + KON2) (6-79)

The tree corresponding to Eq. 6-79 is shown
in Fig. 6-22, where D, and D, are dummy
variables. The Boolean symbols in Eq. 6-79
each represent an electrical function or a
group of electrical functions, namely:

N =A*B*E-C'*D
= (Orderwire)
* (Service Channel Line Equip)
* (Demodulator)
* (Voice Sets)
* (Channel Filters)
I =(AGC)
+ (Combiner Series Circuit)
Y,s = (Engine Gen Set 2)
Y, = (Engine Gen Set 1)
KONl =Y, Y, Y, Yy, Y, *Jd
*N*Q@-S*K-O*R
= (Ant 2 Hor Receive)
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Nitaaecin o s
N
~

KON1 KON1

. * (Ant 2 Vert Receive)
‘ * (Propagation Path 2)
* (Ant 2 Hor Out)
. * (Ant 2 Vert Out)
i . * (Combiner Gain 4)
* (Dual Revr 4)
* (Front End 4) « (Duplexer 2)
* (Combiner Gain 3)
* (Dual Rcvr 3)
* (Front End 3)
KON2 =Y, *Y,*Yg Y, Y,"L
TV M U"W-X
= (Ant 1 Hor Receive)
* (Ant 1 Vert Receive)
* (Propagation Path 1)
* (Ant 1 Hor Out)
* (Ant 1 Vert Out)
* (Combiner Gain 2
* (Dual Revr 2)
* (Front End 2)
* (Combiner Gain 1)
* (Dual Revr 1)
* (Front Er.d 1) * (Duplexer 1)
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FIGURE 6-22. Boolean Tree

Refer back to Fig. 6-18 for the final reliability
configuration.

The relative ordering of equipment is not
and need not be preserved in the reliability
model.

6-3.4.3 Reliability Models for Maintained
Systems

Reliability models for maintained systems
require additional information above that
derived from dependency diagrams and from
the basic reliability block diagram. In practice
(and in theoretical work) the distinction
between redundancy and repair is often
blurred. The names of some of the activities
are sometimes different, but the activities
themselves are very similar. We will use the
term “replacement’ to describe the activity
of removing a nit that is presumed bad and
inserting one that is presumed good. Whether
it is the same unit after being repaired, or a
different one, is irrelevant. Two examples are
given,

6-3.4.3.1 Example No. 1 (Fig. 6-23)
All failure and replacement rates are con-

stant. Blocks B and C have two kinds of
spares, classified according to the ease of re-
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BLOCK A
A -0
t-out-of-1: G

3-out-of-7: G

1 repairman: strategy is defined in the text.

1-out-0f-3: G

System is Good (up) if and only if A,B,C, are Good (up).

FIGURE 6-23. System For Example No. 1

placement; the kind shown separately in Fig.
6-23 are more difficult to replace.

The system consists of three blocks:

1. Block A is a 1-out-of-1:G-subsystem.
2. Block B is a 1-out-of-3:G-subsystem.
3. Block C is a 3 out-of-7:G-subsystem,

The system is up if and only if Blocks A,
B, C are Good (up).

The optimum repair <t.ategy can only be
determined by choosing a figure-of-merit to
optimize, and then solving the problem. A
reasonable set of priorities (in the absence of
the complete solution) for the repairman
might be the following:

1. Finish replacing the unit being worked
on, if any.

2. If more than 1 unit is failed, choose,
in the following order, the one to be replaced:

a. A unit from a block that is down.
If more than one block is down, it makes no
difference which is chosen,

b. An easily-replaceable spare. If
more than one block is down, choose the one
from the block that has the fewest spares that
are good,

3. If a rule is not given completely
encagh, choose one from the allowable failed
units at random,

The rules can become quite complicated
in a theoretical analysis. In practice, the re-
pairman should not be required to make com-
plicated calculations merely to find out which
unit to work on. The rules also can be so
complicated as to make theoretical analysis
virtually impossible. If the replacement rate is
much higher than the failure rate, the stand-
ard matrix techniques can be used.
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BLOCK B BLOCK A
8
e A
8 A

o— B A -0
B A
B A
A A

8 -

8B B 4-out-of 5:G

5-out-of 7:C

Svstem is Goud (up) if and onlv if A and B are Good {(up)

FIGUFE 6-24. Systemm For Example No. 2

6-3.4.3.2 Example No. 2 (Fig. 6-24)

All failure and replacemeat rates are ~on-
stant, Block A is a 4-out of-5.C-subsy.tem.
Block B is a 5-out-of-7:G-subsystem. There is
only 1 kind of spare in each hlock.

64 OTHER MDOELS

The reliahility block diagrem has been
usad thrcughout this chapter to illustrate
logic diagrams for a system. Other kinds of
diagrams, e.g., fauit tree, might be more
appropriate in some cases. See Part Two, De-
sign for Reliability, for a discuission of these
other kinds of logic diagrams.
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CHAPTER 7 KINDS OF REDUNDANCY AND REPAIR

7-1 INTRODUCTION

Redundancy and repair are very similar
concepts. In the general case where switching
is not instantaneous it is easy to visualize two
similar operations, one called redundancy and
one called repair. In redundancy, the time
used to replace a faulty unit is usually shorter
than the time a repair is considered to take.

There are many important considerations
in a redundancy/repair situation, i.e.,

1. In what state are all the units at ¢ = 0?
How does one know? Is checkout perfect?

2. In what state is a repaired unit? Is it
good-as-new? How does one know? Is check-
out perfect?

3. In what state is a repaired system?
How does one know? Is checkout performed?
Is it perfect?

4. What kinds of failures are being allevi-
ated? If failures are due to the rare, random
occurrence of severe conditions, redundancy
might not be of muck: help.

5. How difficult is it to know that a unit
has failed? How difficult is it to remove the
faulty unit and replace it?

6. How much of an improvement in reli-
ability is needed or expected? What reliability
measure is important in your case? For exam-
ple, mean time to failure is not a good reliabil-
ity measure for short times.

7. How much does redundancy/repair
cost in weight, dollars, volume, design effort,
checkout, schedule time, heat dissipation,
system complexity, extra connectors, etc.?

8. What about switching? Is information
lost during switching?

9, What about the failure behavior of
standby equipment?

10. Under what conditions are failures
s-independent? When the correct calculations
have been made, how much improvement in
reliability will there be?

7-2 KNOWLEDGE OF SYSTEM STATE

In order to analyze a system, one needs to
know the state {condition) of the system at
<cveral time instants. The two most important
instants are “‘time = zero” and ‘‘just after re-
pair”,

If a system contains any redundancy, the
question arises, “How does one know that
each unit is good?” Just knowing that the
system is up is not enough, since some units
could be bad and the system would still be
up. Therefore, there must be checkout of
each unit in the system. This involves hard-
ware, software, time, and money. Checkcut is
rarely perfect. Will the analysis take that into
account? The knowledge of system state at
“time = zero” is also important because in
many analyses, a system or unit is presumed
t» be good-as-nev; viz., “time = zero” again
after repair.

There are only two tractable choices in
deciding the condition of a unit after repair:
good-as-new and bad-as-old. Good-as-new of-
ten is taken to mean “perfect”, but if check-
out is involved all it means is that time reverts
to zero for the unit that is good-as-new. The
phrase bad-as-old was coined to contrast with
good-as-new and to illustrate the condition
where the failure rate of the system “immedi-
ately after a repair” is the same as it was “‘just
before repair”. An internal combustion engine
after a mincr tune-up is a good illustration of
bad-as-old. The major components of the en-
gine didn’t change; perhaps all that was dome
was to clean and regap the spark plugs, and
adjust the distributor gap and the timing. The
engine certainly is not good-as-new. A Poisson
process with nonconstant rate is an example
of the bad-as-old behavior.

When the fallure rate of each umt is con-
stant, there is no difference between bad-as-
old and god J-as-new.

In theoretical analyses with complicated
system-states a common assumption is that
the repaired unit is good-as-new, but the other
units are bad-as-old. Of course, because of
tractability considerations, failure rates of
units are assumed most commonly to be con-
stant so that any time the system is known to
be working, it is good-as-new. Many papers
require that the assumptions be inferred from
the mathematics; the authors have been re-
miss in stating assumptions.

Many systems use periodic checkout to as-
certain the state of the system. Preventive
maintenance is perforraed as required. But

7-1
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any time maintenance of any kind is per-
formed, there is the real possibility and dan-
ger that some part of the system has been
damaged unknowingly. There is a short period
of “infant mortality” immediately after any-
one fusses with any complicated system. One
illustration of this fact is that, at least during
Werld War 11, the repair crew chief for aircraft
was supposed to go along on the checkout
flight after a repair.

The state of a complicated real system is
not an easy thing to determine. Many analyses
make the blithe assumption of perfection af-
ter repair, replacement, or checkout. Real
equipment is rarely like that.

7-3 SYSTEM LEVEL FOR REDUNDANCY
APPLICATION

In a system, at what level ought redundan-
cy to be applied? In principle (in the mathe-
matics anyway), one could make every piece-
part redundant, or one could just have several
systems. All of the factors listed in par. 7-1
apply to this decision. The question of switch-
ing is especially important, simply because so
often it is assumed (in the mathematics) to be
perfect: zero cost, instantaneous, no informa-
tion lost, no size or weight, no design time,
etc.

The lower the level at which redundancy
is applied, the more likely are common-mode
failures to be important. The question of con-
ditional s-independence needs to be investi-
gated very carefully. This question is allied
closely with the level at which repair parts
ought to be stocked. What about throw-away
maintenance? At what level ought it be per-
formed?

In practice, an analysis barely can hope to
scratch the surface. Some rough guidelines
can be developed, but pilot projects are the
places where knowledge is really gained. It is
easy for the proposed system to be intractable
for anything but a Monte Carlo simulation.
Therefore, the design engineer and his staff
analysts need to know what simulation ia.:-
guages are available on their computer.

Many analyses are scattered in the litera-
ture. Rarely will the one be there that you
want. They can, however, give an idea about
what to analyze and what direction the results

7-2

might take. See the chapteis that follow and
the Bibliography at the end of this chapter for
some sources,

Roughly speaking, the lower the level at
which redundancy is applied, the more effec-
tive it is (if switching is perfect and failures
are s-independent) and the more it costs (in
everything).

7-4 METHOD OF SWITCHING

In virtually all systems, some kind of
“switching” is necessary for redundancy to be
effective. A fluid flow system might require a
check-valve on each redundant pump; an elec-
tronic system might have to be disconnected.
The three main categories discussed here are
automatic, manual, and repair.

Ia automatic switching, the operator need
not do anything in case of a unit failure. He
may not even be aware that anything has gone
wrong. This is the easiest kind of redundancy
to analyze, although it is difficult to imple-
ment in hardware. If periadic checkout is not
performed, the failed unit might not be dis-
covered until system failure.

Manual switching and repair/replacement
are different degrees of the same thing. An
operator might have only to turn a switch or
valve handle; or he may merely release some
catches or quick disconnects, pull out the
faulty unit, and shove in a good one. The time
it takes for removal/installation and the time
for acquiring the spare are usually matters of
degree, rather than of kind, in the analysis. In
a fixed ground installation, the whole thing
might be accomplished in a few minutes for a
radio-receiver. The transmission in a tank
might take hours to remove/install and days
to fix or acquire another.

The methed that the designer finally
chooses depends on the system specifications
and constraints, on what he is familiar with,
and on what he thinks will really happen in
the field. A lot depends on the kind of logistic
system in use for that equipment,

Often, a Monte Carlo simulation of the
system is the only practical way to analyze
what will happan. In such an analysis it often
pays to be aware of some of the “paths” a
system takes during the failure/repair se-
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quences. In complicated systems, the designer
might be quite surprised at what happens; sit-
uations easily can arise that the designer never
dreamed -,

Reconfiguration of the system to operate
in a degraded mode after a failure and before
a repair is effected is often a desirable situa-
tion. A computer for example might contin-
ue to operate but at a lower speed during the
5 min it takes to remove and replace a unit. A
communication system might slow its message
rate during switchover. The slew rate of a
hydraulically powered system might drop to
one-third its usual value while a redundant
part of the pumping system is being replaced.

As a matter of practical fact, a designer
will make many decisions without using much
more than the engineering judgment of him-
self and his associates (staff or line). There is
not enough time, money, or people to analyze
everything,

7-5 FAILURE BEHAVIOR OF SPARES
AND OTHER PARTS

The terminology in this field is very con-
fusing because it has grown like Topsy. The
best terminology seems to be cold-warm-hot
spares; it is flexible and is not confused with
other aspects of system design. The crux of
the matter is the failure behavior of the units;
but some of the terminology refers to the use
of the unit and only indirectly implies the
failure behavior. The remainder of this para-
graph presumes constant failure rates. More-
complicated failure distributions can be dis-
cussed, but the origin of time must always
then be kept track-of for every unit--a diffi-
cult task indeed.

A cold unit has zero failure rate. This is
not a likely situation because spares in stor-
age, etc., do deteriorate. But it is very tract-
able in an analysis. This is the same as pas-
sive-redundancy. In many cases it is what an
author means by standby-redundancy (unless
he has otherwise specified the failure behav-
ior).

A hot unit has the same failure rate as an
operating unit, regardless of whether it is ac-
tually in operation or not. This is the same as
active redundancy. It is sometimes implied

ANCP 708-197

(by some authors) just by the word redundan-
cy.

A wam unit has a failure rate somewhere
between a hot unit and a cold unit. Often it is
taken to be the general case and includes hot
and cold as limiting situations.

In some anralyses where the units always
are working, the individual failure rates de-
pend on the number that are working. A con-
ceptually simple example is several induction
motors (tied firmly together so that their
shafts are effectively in line). Suppose the fail-
ure mode is insulation failure due to tempera-
ture rise and there are six high-slip 5-hp mo-
tors driving a 20-hp load. The temperature
rise of the operating motors will depend on
the number of operating motors. Allow 10
percent for nonuniform distribution of load.
Then the maximum load on each motor when
six motors are operating is (20-hp/6) X 1.1 =
3.7-hp; for five motors it is 4.4-hp; for four
motors, it is 5.5-hp; nnd for three motors, it is

7.3-hp. Obviously, the insulation will degrade
1auch faster as the number of motors is re-
duced. At nominal 7.3-hp load, the current
would probably be high enough to kick out
the ovurloads. Another example is a commu-
nication system. If radio receivers are han-
dling traffic in parallel, the failure rate of each
receiver is probably independeni of the num-
ber of units which are operating, uniess heat
dissipation is a critical factor,

It is best to use a term to describe redun-
dancy which indicates the failure rate behav-
ior, not the operating condition of a redun-
dant/spare unit.

7-6 STYLES OF REDUNDANCY

There are at least three styles of creating
redundancy:

(1) k-out-of-n systems

(2) Voting techniques

(3) Other.
The “Other” category includes combinations
of the first two, and multiple units which do
not easily reduce to k-out-of-n. Hammock
(bridge) networks are in the latter category. It
is most important to distinguish between the
physical system and the logic chart used to
describe the physical system. The description

7-3
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difficulty typically arises when there are two
“opposite” failure modes: open - short, dud -
prematurz, too soon - too late, high - low,
etc.; then at least two logic charts are neces-
sary for the one physical system. Very often a
redundant feature for one mode tumns out to
be a series feature for the other mode. For
example, features which decrease the proba-
bility of prematures, will usually increase the
probability of duds. The Bibliography at the
end of this chapter shows sources of further
information.

7-6.1 k-QUT-OF-n SYSTEMS

A k-out-of-n:G-system has n units and is
Good (up) if and only if at least & units are
Good (up).

A k-out-of-n:F-system has n units and is
Failed (down) if and only if at least k units
are Failed (down).

A series system is a 1l-out-of-n:F (n-out-
of-n:G)-system—i.e., if 1 unit fails, the system
fails—ail units must be good for the system to
be good.

A parallel system iz usually taken to be a
1l-out-of-n:G (n-out-of-n:F)-system—i.e., if 1
unit is good, the system is good—all units
must be failed for the system to fail.

A k-out-of-n:F gystem isan(n — &k + 1)-
out-of-n:G-system; and a k-out-of-n:G-system
is an {n — k + 1)-out-of-n:F-system. Some-
times the name parallel-system is used synon-
ymously with a k-out-of-n system. Since the
term parallel is ambiguous, it is best avoided
when accurate description is needed. The
k-out-of-n:G or k-out-of-n:F notations are
much to be preferred.

A k-out-of-n system is also an ambiguous
phrase and is used both ways in the literature.
It is best to use the :G or :F notation when
accurate description is needed, and to define
it.

The k-out-of-n system is usually easy to
analyze if the redundancy is either hot or cold
and the switching is perfect. The general case
for warm redundancy and imperfect switching
has rot been solved in general. Some results
are available for small n and constant failure
rates for each unit. Ref. 3 provides an extend-

74

ed summary and analysis of many k-out-of-n
systems.

7-6.2 VOTING TECHNIQUES

Voting ondinarily is associated with digital
electronic circuits, although some circuits for
analog electronic systems have appeared in
the literature. It does not appear to be appli-
cable at all to mechanical systems.

A voter has n active inputs, the output
corresponds to the inputs which are the same
for more than n/2 of the inputs. In most hard-
ware implementations, n = 3, and two inputs
determine the output. If a unit fails (and the
failure is somehow sensed), the failed unit can
be removed and the voter can be restructured.
If n = 3 and one unit fails without being re-
moved, then n = 2 and all must agree, in order
for a signal to be passed on. If those two dis-
agree, then the designer has to decide what to
do. Refs. 1, 2, and 4 discuss this situation and
give some other references.

It is possible to have some spares for some
voters, e.g., each element could be a k-out-of-
n subsystem. The voters themselves can be
arranged in a voting fashion. Refs. 1 and 4
describe many of the possibilities for redun-
dancy in computers. Refs. 2 and 3 give many
of the formulas that are useful in analyzing
these redundancies.

7-6.3 OTHER SYSTEMS

Voting techniques can be combined with
k-out-of-n systems to enhance hardware relia-
bility along with masking of faults which need
not be permanent. Very elaborate redundan-
cy techniques are best avoided unless an ex-
tremely thorough investigation, both theoreti-
cal and practical, has been made of the pro-
posed system. Coverage is a term used to de-
scribe the detection-switching-retention pro-
cess in redundancy. In order for automatic
redundancy to be effective, failed units must
be detected accurately and without false a-
larms, then the spare unit (sumehow known
to be good) must be switched in, and the in-
formation that the system was processing can-
not be mangled during the operation.

There are redundant (nonvoting) systems
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that cannot be reduced to the k-out-of-n type.
The logic diagrams for the irreducible net-
works often are called bridge or hammock
networks (bridge because of the similarity to
a8 Wheatstone bridge; hammock because the
appearance can be like a rope hammock). The
success or fallure events for these networks
usually are more comylicated than simple
series-parallel networks. Some analytic meth-
ods of reliability calculation do not handle
bridge networks very well.

There are, of course, many kinds of re-
dundancy which are not easily classified. For
example, some auxiliary systems to be used
only in emezgencies are not equivalent to the
systers they ‘‘replace”. Another example is
the restructuring kind of redundancy where,
if a unit fails, other units are restructured to
keep the system going, albeit at a reduced
level.
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CHAPTER 8 RELIABILITY PREDICTION
(PASSIVE REDUNDANCY, PERFECT SWITCHING)

80 LIST OF SYMBOLS

i ,i i = event of short, open, or good
for capacitor i
F = event of failure

k-out-of-n:F = special kind of system
k-out-of-n:G = special kind of system

MTF,; = Mean Time to Failure for case

i

number of logic elements

n -

n, = greatest “integer < n/2”

R, = s-reliability for case i
R,,R = element s-reliabilities

R, = s-reliability of the voter

&, = 14,

R, = 1R,

s- = denotes statistical definitions

81 INTRODUCTION

This chapter deals with the simplest of
formulas. The probability of failure of each
element is not affected by its active/standby
status nor by the condition of other elements.
Switching is either (a) perfect, i.e., switching
and all of its ramifications are not considered
at all; or (b) can be represented adequately by
a block in the logic diagram.

In analyzing a system by this method, the
dis.inction between the physical situation and
the logic chart always must be kept in mind.
Elements that are physically in series can be
logically in parallel (it depends on failure
modes). If two centrifugal pumps are physi-
cally in tandem and one stops running, the
other could possibly carry the load; they
would be logically in parallel. Refs. 3-8 give
many formulas for system reliability. Series
and parallel are terms which are hest avoided
when precision is necessary.

All element behaviors are conditionally
s-independent (the “conditional” is to empha-
size that unconditional s-independence is rare-
ly obtained).

8-2 k-OUT-OFn SYSTEMS

A k-out-of-n:F-system has n elements and
Fails 1if and only 1if at least k elements Fail.

A k-out-of-n:G-system has n elements and
is Good if and only if at lcast & elements are
Good.

Case 1. k-out-of-n:G,allR,= R
n
], = E (:') Ri En-i
k
= (”) Rr-i B (8-1a)
}: ¥

0
k-1
3 () n
0
n

Z et R (8-1b)

n-k+1

Case 2. k-out-of-n:F,all R, =R
n

R. = ) Ri pn-

g, E (:) RiR

<") Rn-i Ri (8-2a)

= Rr R (8-2b)

Case 3. 1-out-of-n:G (parallel)

® <R R, R (8-3)

n

Case 4. 1-out-of-n:G (parallel), all R, =R
R, = R (8-4)

8-1
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Case 5. 1-out-of-a:F (series)
R = R, R, > R, (8-5)
Case 6. 1-out-of-n:F (series), all R, = R
R = R (8-6)

The formulas for k-out-of-n systems when all
R, # R are not tractable. They are derived
generally as shown in par. 8-4.

8-3 COMBINATIONS OF SERIES-PARAL-
LEL ELEMENTS

Many systems can be considered as made
up of series-parallel combinations of elements.
A convenient technique for reliability calcula-
tions is to reduce each simple combination of
series or parallel elements to a single element
with the reliability of the combination. Exam-
ple No. 1 (Fig. 8-1) shows how the reduction
is performed. Fig. 8-1(A) shows the original
logic chart. Each block is an element and is
numbered. Equivalert blocks are numbered
further.

The first reduction takes place as follows
(Fig. 8-1(A) to Fig. 8-1(B)):

R, =1—R, (8-7b)
Rig = Ry Ry (8-8a)
R, = 1—-Ry (8-8b)
R, = 1-R, (8-9b)
R,, = R, R, (8-10a)
R, = 1-R,, (8-10b)

The second reduction is as follows (Fig.
8-1(B) to Fig. 8-1(C)):

R = Ry Ry,

Rig = 1-Ry

(8 11a)
(8-11h)

The third reduction 15 as follows (Fig.
8-1(C) to Fig. 8-1{D)):

8-2
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R,, = R,s Ry (8-12a)
R, = 1—R,, (8-12b)

The fourth reduction is as follows (Fig.
8-1(D) to Fig. 8-1(E)):

R, = R;3Ry,;
Ru = 1—-Ry,

(8-13a)
(8-13b)

The fifth reduction is as follows (Fig.
8-1(E) to Fig. 8-1(F)):

RIQ = Eu Rns
Ry = 1= Ry

(8-14a)
(8-14b)

The final reduction is as follows (Fig.
81(F) to Fig. 8-1(G)):

Ry = Ry Ryy

Rm = l_Rm

(8-15aj
{8-15b)

Thus a series of series-parallel reductions
has solved the example problem in Fig. 8-1.
There is no good reason to combine all the
formulas into one expression; it would be
tedious, long, and cumbersome.

Not all systems can be reduced by this
technique, but a great many ces. If the
switching is not perfect, one of the other
techniques is better—if for no other reason
that not all failure events are likely to be
s-independent.

8-4 EVENT ANALYSIS

When logic charts are not series-parallel
arrangements, the analysis can proceed by
looking at all possible events, classifying them
into appropriate subsets (e.g., system-good,
system-degraded, system-failure-type-1, sys-
tem-failure-type-2). Then the probability of
each subset is calculated by the rules for
evaluating probabilities of combinations of
events (Chapter 3).

Logic charts generally are drawn from a
physical diagram and a knowledge of the re-
quirements for success. In some cases, as In
Example No. 2 (Fig. 8-2), it is too comph-
cated to draw logic diagrams; instead the
events are hsted. There are three possible
states of each capacitor and four capacitors:
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(A) Initial Logic Chart

-
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(B) First Reduction of Logic Chart
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N o—{T—

(13]
3
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(C) Second Reduction of Logic Chart

[12]
{17

IN O_.E]._ o oOout
o N

(D) Third Reduction of Logic Chart

Series combinations are t-out-of# F, use Eq. 8-5.

Paratiel combinations are 1-out-of-n G, use £q. 8-3.

Find the system reliability and unreliabihity,

In this kind of diagram, success is a continuous path from input to output.

FIGURE 8-1. Logic Diagrams for Example No. 1.

S e e S il

i,

i s b it Skt

S

KN




XY

T T e S KT

Ty

TR KT,

e oy

Ko Y pIe

VAT T T

PREVESRVY

= ptose,

S pessbnss

T

AMCP 708-197

v Downloaded from http://www.everyspec.com

(E} Fourth Reduction of Logic Chart
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19}—o0 our

(F)} Fifth Reduction of Logic Chart

INO—

{20} ~00uT

(G) Final Reduction of Logic Chart

Series combinations are 1-out-of-n'F; use Eq. 85

Parallel combinations are 1-out-of -n:G, use Eq. 8-3.

Find the system relabihity and unreliability.

In this kind of diagram, success is a continuous path from input

to output,

FIGURE 8-1. Logic Diagrams for Example No. 1(cont‘d)

there are 3* = 81 possible combinations. In
order to simplify Table 81, the capacitor
numbers are listed at the top of each column,
and an “o”, *‘s”, or “‘g” put in the column for
each event. An “f” indicates Failed for the
network; a blank indicates Good. 1t is failed il
(1 and 2 are short) U (3 and 4 are short) U (1
and 4 ave short) U (3 and 2 are short) U (1
and 3 are open) U (2 and 4 are open). Tabl
8-1 is long and tedious. The events can be put
in more symbol notation and give the same
results, i.e..

F = (14N25)U(3:N44)0U(1,N4)0U(24N3,)
UlgN3,U(2,Nd,) . (816)

84

However, the events in the Table are all mutu-
ally exclusive whereas the events in parenthe-
ses in Eq. 8-16 are nodi.

It takes hut little imagination to realize
that this approach can get out of hand with
very little complication of the network or
system.

8-5 CUT SETS

A cut set is an event (subset of the sample
space) such that when it occurs, the system
fails in the indicated failure mode. A minimal
cut set is a cut set such that the elimination of
any element renders it no longer a cut set.
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CAPAC!TOR BRIDGE

Capacitors can fail open or short. The network is good as long as it is neither ~nen nor short.

i, implies ““open circuit of capecitor /"’
iy imolies “'short cir cuit of capacitor i*
iy implies ““good czpacitor i

FIGURE 8-2. Physical Diagram for Example No. 2

In the example from par. 84, ir iz, 82
and Eq. 8-16, each of the six eventi. in pare.-
theses in Eq, 8-16 is a minimal cut set. The
Pr{F} in Eq. 8-16 can be calculated by an
iterative procedure using Eq. 2-20 which pro-
vides a series of upper and lower bounds on
the Pr{F}.

The first upper bound is the sum of the
probabilities of each of the six events in pa-
rentheses in Eq. 8-16. The first lower bound is
found by subtracting (from the first upper
bound) the sum of the probabilities of the 15
unions of each pair of the six events. The
second upper bound is found by adding (to
the first lower bound) the sum of the proba-
bilities of the 20 unions of each triplet of the
six evaents. As shown in Eq. 2-20, the unions
are taken two, then three, then four, then
five, and finally six at a time. The odd ones
(one, three, five) are added, the even ones
(two, four, six) are subtracted. An example of
the procedure is shown in Ref. 1; a FOR-
TRAN program for performing this calcula-
tion is shown in Ref. 2.

Even though the principles involved are
straightforward, iinplementing them on any
reasorably sized system can be very tedious
and complicated.

Chanter 7 “Cause-Consequence Charts
(and Fault Trees)” of Part ‘‘wo, Design for

Reliabiiity, contains further information and
references on finding minimal cut sets for
systems; references are also made there to
automated methods of finding all minimal cut
sets for a fault tree.

8-6 MAJORITY VOTING

In majority-voting redundancy the proper
output of the system is presumed to be the
output of the m.jority of the individual logic
elements which feed the voter (Ref. 3). The
output is determined by the voter, which
decides what the majority of the elements in-
dicates. The system gives the correct cutput
when less than half of the elements have
failed and when the voter is good.

Case 7. Simple majority voting

n
- Z : n B 8
®, = R, (\1) R| Rn-i (8-17)
where 1
n = number of logic elements

n, = greatest “integer < n/2”

R, = s-reliability of the voter

R, = s-reiability of a logic element
R, =1- R,

85
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TABLE 8-1 Eq. 8-17 assumes that failure of any ele-

ment is absolute (i.e., it cannot assist in giving

STATES OF CAPACITOR NETWORK IN FiG. 8-2 the correct answer) and is s-independent.
Other analyses are possible which make other

1234 1234 1234 more realistic assumptions about the failures.
The voter itself can be made into a major-
ggee sggg OZEE ity element; the analysis of such a system
gggs sggsf OZE%5  becomes quite complicated.
gggo sggo oggo
gesg sgsg ogsg REFERENCES
ggssf sgssf ogssf
ggso sgso Og50 1. A. C. Nelson, J. R. Batts, R. L. Beadles,
“A Computer Program for Approximating
ggog sgog ngogf System Reliability”, IEEE Transactions
ggos sgosf sgosf on Reliability, R-19, 61-65, May 1970,
ggoo sgoo ogoof 2 J. R. Batts, “Computer Program for
Approximating System Reliability-Part
; Esgg s5gg ff 0sgg II”, IEEE Transactions on Reliability, :
gsg §sgs p 05gs R-20, 88-90, May 1971.
§- gsgo ssgo o0sgo 3. Handbook for Systems Application of Re-
4 dundancy, US Naval Applied Science
“ ’
' gss g: sesg ‘f-’ 0ssg : Laboratory, 30 August 1966.
gs Sof : ::o p 0sss ¢ 4 N. G. Dennis, “Reliability Analyses of
3 0sso Combined Voting and Standby Redun-
d . ”’ E . . . ..
gs0g ssogf osogf d ;n;x-ezss‘ Allﬂmll'll'g%rfsactmns on Reliabili
Booe ssost 2395T 5. N.G. Dennis, “Insight Into Standby Re-
oo dunaancy via Unreliability”, IEEE Trans-
goge sogg oogg z;%t';zns on Reliability, R-23, December
gogs sogsf oogs 6. M L.Shoo I N
. M. L. man, Probabilistic Reliability,
gogof sogof oogof McGraw-Hill, N.Y., 1968,
. 7. Gnedenko, Belyayev, and Soloveyv, Math-
g g : f £ suoosssgf o° 0s % ematical Methods o] ileliability Theory,
20s0f Sosof o ::j : Academic Press, N.Y., 1969.
8. Mathur and deSousa, “‘Reliability Models
f NMR Systems”, IEEE Transactions on
goog soog ooogf oF N '
£00s $00sf 000sf Reliability, R-24, June 1975,
gooof sooof oooof

8-6
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CHAPTER 9 RELIABILITY PREDICTION (TIME DEPENDENT)

9-0 LIST OF SYMBOLS

csqf(x*,») = chi square Cdf with v degrees

of freedom
esqfe (x*,v) = lcsqf (x*,v)
f(t) = pdfof t
f(t), &(t) = pdf's for elements in par. 9-6
fo = pdf for element « in par. 9-7
F_ = Cdf for element a in par. 9-7
F(t), G(f) = Sf's for elements in par. 96
F, = Sf for element a in par. 9-7
gauf(+) = Cdf for s-normal (Gaussian)
distribution
gaufe (*) = 1-gauf(*)
k=N

MTF; = Mean Time to Failure for case
i
Pij»9; = element s-reliability and
s-unreliability, respectively,
(Table 9-2)
pdf = probability density function
R(t), Rft) = s-reliability dering interval 0

tot
R; = s-reliability for case i
ﬁl = 1./ i
8- = denotes statistical definition
Sf = Survivor function
t = time, time-to-failure
t = atime0<t, <t
2z, = standard s-normal variate
g, = an MTF for situation i
A, \; = failure rates
A, A = failure rates
At = dimensionless *‘parameter”

¢, o = mean and standard deviation,

1espectively, for an s-normal
distribution

T = At; time interval for par. 9-9

9-1 INTRODUCTION

There is a multitude of formulas for cal-
culating reliability of redundant systems.
Virtually all of them presume conditional
s-independence of the elements. It is impor-
tant in ¢« practical analysis to list each set of
conditions under which s-independence will
hold.

In the vast majority of cases in analyses
for redundancy, transition rates (e.g., failure

and repair rates) are assumed to be constant.
Any other assumption causes many complica-
tions in the analysis.

9-2 MEASURES OF RELIABILITY

The two measures most frequently used
to compare the effectiveness of redundancy
are:

1. Mean time to failure (MTF) of the
system—useful when mission times are long
compared to the lives of elements.

2. Probability of failure of the system—
useful when mission times are short compared
to the lives of elements,

In all cases in this volume, the proviso exists
on all formulas that the indicated operation is
“legal” and the result exists. The proviso is
satisfied for practical reliability problems.

The MTF is defined as
MTF E/t f(t)dt =fR(t)dt (9-1)
0 0

where

f(t) = pdf of time to failure
R(t) = Sf of time to failure

9-3 THE EXPONENTIAL DISTRIBUTION

The time-to-failure pdf and the reliability
function (survivor function 3f) of the expo-
nential distribution are, respectively,

#t) = ne™ Mt
Riti=e M
where )\ is the constart failur. (hazard) rate.

All failures are s-independent and all standbys
are hot {uctive).

Case 1, Two elements in parallel \1-out-
0f-2:G) have failure rates, A, and A,. The
s-reliability & , (t) is

@ ()=1-(Q1~- e Nat)(1— e Mot

me— Aot 4 g=Abt — g~ (At AR

(9-2)

(9-38)
1 1 i
MTF1 = ;:-+ ;-;— '--"—'h W (9-3b)

Gase 2, Seme as Case 1, except A, =\, =
X (identical elements), then

9-1
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R (t)=e"2 (2—eH), (94
3
MTF, =3x. (9-4b)
Cage 3. m active-paralle] elements (1-out-
of-m:G, hot standby).
&, (t) = ‘ﬂl (1~ e) (9-5e)
m
»n 1 1
MTF, =.}-:; %+ —”Z_, VY
i</
m
1
T T (9-50)
i =1
iI<j<k

Case 4, Same as 'Case 3, except all
elements are identical, A, = A for all i.

=(1 — o—Alym
Rey =1 e ) (9-6a)
MTF, = 51\. Tl . (9-6b)
i=1

9-3.1 RELIABILITY IMPROVEMENT

The reliability functions for a system with
m parallel (1l-out-of-m:G, hot standby)
elements (m = 1,23,4,5) and A = A, =
constant are plotted in Fig. 9-1.

Another m2thocd of measuring reliability
improvement is to culculate the ratios (or
differences) in MTF of two systems. Tuble 9-1

1.0

08

06

04

bY3

0L

Williem H. Von Alven, Ed., feliabilivy Enqineering, © 1964
by ARINC Research Corparation, Reprinind by permission
of Prentice-Hal!, Inc., Englev.cod Cliffs, N.J.

FIGURE 9-1. Reliabitity Function for Systerus With
m Idenzical, Act;ve. Parallel Llements, Each with
Constant Faiiure Rate ) [i-out-of-m:G)}

9.2

TABLE 91
RATIOS OF MTF’S FOR m ACTIVE-PARALLEL
ELEMENTS?
m 0/P1 O Py -1
1 1.00 -
2 1.50 150
3 1.83 1.22
4 208 1.14
5 2.28 1.10

William H. Von Alven, Ed., Reliability Engineering, © 1964
by ARINC Resesrch Corporation. Reprinted by permission
of Prentice-Hall, Inc., Englewood Cliffs, NJ.

gives the ratios of MTF for 0 /0, and
0,10, form=1,2,3,4,5;

where 8, = MTF for i elements as given by Eq.
9-6b,

From Table 9-1 it can be seen that the
6,1/, _, maximum occurs when m = 2.

The improvements are, in most cases, the
maximum that can be achieved. If the
elements have more than one failure mode
and/or if switching is imperfect, the
effectiveness of the redundancy is reduced.

9-3.2 REDUNDANCY VERSUS IMPROVED
ELEMENTS

A system designer may have the option of
adding redundant elements or using improved
elements in a nonredundant configuration to
increase reliability (Refs. 1 and 2). The
designer must consider effectiveness, cost,
weight, maintenance, and other related
considerations in making his choice.

Case 5. Two alike elements are connected
in active-parailel (Case 2); their MTF is
3/(2\), from Eq. 9-4a. To obtain the same
MTF with a single improved element, the
improved element must have X = 2) /3.

The s-reliability &  of the improved
element is R =e Nt =g 22173 (9-7a)

=1 .1 .
MTFg = T (9-Tb)
The s-reliabilities &, and &, are plotted in
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William H. Von Alven, Ed., Reliability Envinsering, © 1964
by ARINC Research Corporation. Reprinted by permission
of Prentice-Hall, Inc., Englewood Cliffs, N.J.

FIGURE 9-2. Survivor Functions for Two Pr.rticular
Systems With the Same MTF*

Fig. 9-2. From the figure, the redundant
system has the greater reliability up to At =
1.75. After that, the improved singie-element
system is the more reliable. The point of
intersection of the two functions will change
if more redundant elements are added, if the
degree of element improvement varies, or if
standby redundancy is used.

In redundancy applications, there is
usually one time, say t', when the reliability of
a nonredundant system with improved
elements is equal to the reliability of a
redundant system with less reliable elements.
When ¢t < ', the redundant system has the
greater reliability. Whea : > t, the
improved-element system ic superior. The
choice of the system conliguration depends
on the ratio of element life to mission time.

54 THE s-NORMAL DISTRIBUTION

The s-normal distribution is useful to
describe many systems whose failure rate
increases “to infinity”. Its pdf is

= 1 _1 t—p,
= ——=ewl-2EEP] @8

where
g = mesn time %o failure
¢ = standuid deviation
We ciso introduce the tollowing notation.

gouf (z) = Cdf of the standsrd s-normal
(Gaussian) distribution (u>Y,
0:=1), the probability of failure)

geufe (z) = Sf ot the standard s-normal
distribution (the r«liability; it is
the complement of the gauf(z).
(the reliability)

Cage 6. Two elements in active parallel
redunduney (1-out-of-2:G, het standby); eact
has an s-norma! distribution of time to failure
with parameters i ,0, andp, .0, . Define

z, = Jfa,z2, = i.;.“;a.. (9-9)
a
From Eq. 8-3, the probability of failure is
&, = gouf (z,) gauf (z,) (9-10)

To illustrate Case 6, assume ‘hat the two
components, A and B, have the following
parzmeters:

p, = 300hr u, = 400 hr
o, = 40hr o, = 60hr (9-11)
In order to evaluate the reliability of this

redundant unit at, say 350 hr, the following
computation is performed using Eq. 9-9:

= 250 hr -- 300 hr - 125

Z, = 40 hr
zb = 350 I'sro—h:oo hr = —0.833 (9_12)

Now refer to the tables of the s-normal
distribution.

Uareliability or probability of
failure = gouf(1.25) gauf(—0.833) =

0.8944 X 0,2026 = 0,1812~ 0,18 (9-13)

9.6 OTHER CONFIGURATIONS

Table 9-2 lists the reliability of several
combinations of elements. The last column
shows the MTF under the assumption that all
elements have an identical constant failure
rale.
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Notation for Table 9-2:
P, = survival probability of element i
q =1-p
A = common constant failure rate
for last column.

If the failure rates are neither common nor
constant, the MTF is tedious and difficult to
calculate. As an example, assume the
redundant system in Fig. 9-3. System
reliability can be determined from

“s(t) =e—k¢l[e—'lbl +e—~h¢l

— e ¥ Rc)lxle g +re)t

ANCP 708-197

The MTF is computed by integrating the
reliability function:
MTF = SV 3 1995~
i=1 ' =6

132.9 = 66.6. (9-17)

9-6 s-DEPENDENT FAILURE PROBABIL-
ITIES

Up to this point, it has been assumed that
the failure of an active redundant element has
no effect on the other active elements.
However, the opposite condition often

+ e M — g Ratretrp (9-14) arises—the failure of one element does affect
5 ° the others. For example, consider the klock
= 2 e Mt _Z e—Ait diagram in Fig. 9-4. A and B are both fully
- v ’ (9-35)  energized, and normally share or camry half
the load—L/2. If either A or B tails, tie
where survivor must then carry the full load. Hence,
A, A HN, + A, =0620 the probability that one (say B) fails depends
oy - on the state of the other if failure probability
Ag B A HA, +A, 4, =0.022 is related to loal or stress. A simple example
Ay EA,HA FA,+ A =0.027 would be a 2-engine airplane which, if one
Ay SN, HA 4, =0.025 engine fails, can still keep flying. However,
N _ the surviving engine now has to carry the full
Mg SA N HAHA, A Ap = load and aas a higher probability of failing.
0.087 For this relatively simple example, the
Ag A EX HA, HA 4 A, =0.027 reiiability function can be derived by
N TALEA FA N+ A, =0.032 considering all possible ways of system
I ¢ i success, as shown in Fig. 9-5. The bar above a
Ag = A, + A, A X, +A,=0.032 letter represents failure of that element. The
Ay = A FA, A+, =0.030. (9-16) prime vepresents operation of that element
8 E

C F ‘_—J

A\, =0.0100 Ao = 00100 Ae =0.0033

Ap = 0.0050 Ag =0.0033 A\¢ =0.0050

For convenience, the X has been taken as dimensionless.
Actually, the MTF will have the reciprocal dimension of the A.

William H. Vion Alven, Ed., Relability Engineering, © 1964
by ARINC Research Corporation. Reprinted by permission
of Prentice-Hall, Inc., Englewood Cliffs, N.J,

FIGURE 9-3. Illustrative System®
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Load L

B

Wiiliam H. Von Alven, Ed., Aelisbility Engineering, © 1964
by ARINC Resesrch Corporstion. Reprinted by permission
of Prentice-Hell, Inc., Englewood Cliffs, NJ.

FIGURE 9-4. System With Load Dependent Failure®

under full load; absence of a prime represents
operation under half load.

The derivation is as follows. Let

f(t) = failure-time pdf of each element
when both elements are operating;

F(t) = Sf correponding to f(t)

g(t) = element failure-time pdf of the un-
failed element when one element
has failed;

G(t) = Sf corresponding to g(t)

t, <t = some point in time
L = full load

The system operates satisfactorily at time
t if either A or B both are operating
successfully. Under the assumption that the
elements are s-independent if both are
operating, the prcbability that both will
operate until time ¢ is

[F(t))? (9-18)
The pdf for one element failing at time ¢, and
the other surviving to ¢, under L/2 and from
t, totunderL is

f(t, )F(t )G(t-t ) (9-19)

Since t, can range from 0 to ¢, this pdf is
integrated over that range, and the resulting
probability is doubled because the event can
occur in either of two ways. Hence,

t
R(t) = [F(t))* + 2J ft,)
0

F(t)G(t—t, )dt, (9-20)

9-8

0 H t

Comﬁna} 1) AB
° AB
3)

A8
nm——
¥ A

—l

AB

Success = Conditions (1), (2), or (3)

FIGURE 9-5. Time Sequence Disgram®

Special Case. The element failure times
are exponentially distributed and each has a
parameter A under load L/2, and X under load
L. Define

k =X/,
The solution of Eq. 220 is
R(t) = |2 exp (—Xt) — k exp (—2A8)]/

(9-21)

(2—k) b # 2 (9-22)

R(t)= (2\t+1) exp (—2At), k=2  (9-23)
The system MTF is

MTF =3 € + 3). (9-24)

When k = 1, load-sharing is not present,
i.e., increased load does not affect the
element failure probability. This assumption
was made in the previous discussions of
active-parallel redundancy. If there were only
one element, it would be operating under full
load; therefore, the system MTF would be 1/X
= 1/(k)).

A single improved eleraent can be used as
an alternative to redundancy when this
s-dependent model is assumed. The effects of
using improved single elements or redundant
standard elements can he illustrated as
follows. Consider

A: Single standard element; A = 1/50
B: Single improved element; » =1/100

C: s-Deperdent model, standard elements;
\ (half load) = 1/100, \' (full load) =
1/50.
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The MTF’s and s-reliability functions of

these three configurations are
MT¥, = 50 (9-25a)
R, (t) = e /%0 (9-25b)
MTF, = 100 (9-26a)
R, (1) = e */100 (9-26b)
MTF, = 100 (9-27a)
R (t) = e */3°(1 + ¢/50). {9-27b)

The s-reliability functions are shown in
Fig. 9-6. Although systems B and C have the
same MTF, the redundant systern has greater
reliability in early life. After approximately
125 hours, the improved single-element
system is superior. If such facters as
effectiveness, cost, weight, and complexity
are approximately equivalent for systems B
and C, the choice wculd depend on the
Required Time of Operation for the system.

9-7 STANDBY REDUNDANCY

In a system of redundant elements that
are completely on standby, the standby
elements are cold (have zero failure rate) until
the primary element fails (Ref. 2). The
necessary switching is perfect.

Case 7. The system contains two
elements, A and B; the reliability function can
be found as indicated.

Single standard element A = 1/(50 hr)
Single improved element A = 1/(100 hr}
Redundant configuration, dependent
mode! A = 1/{100 hr} X' - 1/{50 hr}

1]

s

L]

'R}

02

[ 50 100 150 200 280 300
Time t, hr
William H. Von Alven, Ed., Relisbility Engineering, © 1964

by ARINC Researciy Corporation. Reprinted by permission
of F-entice-Hall, Inc., Englewood Chiffs, N.J.

FIGURFE 9-6. s-Renability Functions for Redundant
Cuiifiguration (Dependent Model) a4 Nonredun-
dant Configurations®
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The system will be successful at time ¢ if
either (letting A be the primary element):
1. A succeeds up to time ¢, or
2. Afaihattimet, < t and B operates
from¢, tot.

Fig. 9-7 shows these two conditions.

t
R(t)=F (1) + I [(t,)F (t—t )dt,,
° (9-28)

The first term of Eq. 9-28 is the
probability that element A will succeed until
time t. The integrand is the pdf of A failing
exactly at t, and B succeeding for the
remaining (¢ — ¢,) hours. Since ¢, can range
from O to ¢, t, is integrated over that range.

Case 8. Same as Case 7, but for the
exponential case where the element failure
rates are A, and kb’

Ay
- ~A
Ry(t)= o €Mt

_ Ag e”‘b‘. A #A (9°298)
Ap — Ag a b

R(ty=e M (1 +At),A, =7, =\, (9-20b)

It does not matter whether the more reliable
element is used as the primary or the standby
element.

Case 9. Same as Case 8 except there are
n elements each with parameter A,

n 1
- - (Ayr
“s(t)"e At E TR

(9-30a)
r=0
MTF9 =n/A (9-30b)
Time Axis + —
11 ¢
Condition A
(1 -
A

Wilham H. Von Alven, Ed., Relisbility Enginesring, © 1964
by ARINC Research Corporation. Reprinted by permission
of Prentice-Hall, Inc,, Englewood Cliffs, N.J.

FIGURE 1-7. Time Sequence Diagram for Standby
Redundancy?
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9-7.1 SWITCHING FAILURES

Case 10, The following notation will be
used for a 2-element standby redundant unit
requiring a decision-and-switching device that
switches in one direction only (Ref. 2):
£,(t). 1, (t) = failure pdf’s of elements A and

B

f,(t) = failure pdf of element B when
on standby

conditional contact failure pdf
(failure of the contact to
maintain a good connection,
given that a good connection
initially existed)

£ =

f,(t) = conditional dynamic failure pdf
(failure to switch, given that A
has failed)

f,(t) = conditional static failure pdf

(switching when not required)
required)

Cdf and Sf corresponding to f,,
a«a=q,b8,x,y,z2

fx(t), fy(t), and fz(t) refer to
decision-and-switching device failures which
may not be time-dependent. If these failures
are not time-dependent, the appropriate
failure pdf is replaced by a constant
probability of failure,

Fc’Fa =

[
@, (t)=F (t){F (UF (1) + S [F,(t,)
(1]

f(t )F (t—t )F (t JF (t=t )]
t
de, + 5 [f,(t,)F (t,)F (t,)
[

Fy(t,)F (t~t,)F (t—t, idt, }.  (9-31)
In Eq. 9-31, the first term inside the brackets
represents the probability that A operates to ¢
without premature switching. The second
term represents the probability that a suatic
failure occurs at time t, < ¢, but B operates
to t. The last term represents the probability
that A fails at time ¢, < t and the
decision-and-switching device switches to B
(no dynamic failure), which operates to t.

9-10
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This equation represents a general case in that
the following possibilities are included:
1. A and B can be different elements.

2. A static failure can occur if B is
energized, resulting in no output or a false
indication of system failure. If a static failure
cannot occur when B is energized, then F (t)
=],

3. B can fail while on standby, and its
failure pdf can be different from that when B
is energized. If B is a “cold” rather than a
“warm” or “hot” reserve, fy(t) =0, F, (t) = 1.

Case 11. Same as Case 10, but identical
elements (A and B) with constant failure rate
A, = A, =) and cold standby. Eq. 9-31

A
becomes

A
R, ()= e AR A 14 4 b

(1—e M) (9-32)

Case 12. Same as Case 11, but
A, =X =, =0

then, sinco

lim { 1—e Myt }=t
A-0 Ay

R, (h=e (1 +20).

which agrees with Eq. 9-29b, as it should. The
effects of imperfect switching also are
analyzed in Refs. 4,6,7.

9-7.2 OPTIMUM DESIGN: GENERAL
MODEL

Case 13. There are n redundant paths
with (n — 1) in cold standby, and each path
requires a switching device. In this model, the
monitor represents the failure-detection and
switching-control functions. These two
functions can be considered as one for
reliability purposes if it is assumed that the
probability of compensating errors is
nagligible. All failure distributions have
constant failure rates.

The following assumptions are made when
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computing the reliability of these systems
(Ref. 2):

1. Switching is in one direction only.

2. Standby (reserve) paths cannot fail if
not energized.

3. Switching devices ought to respond
only when directed to switch by the monitor;
false switching operation (static failure) is
detected by the monitor as a path failure, and
switching is initiated.

4. Switching devices do not fail if not
energized.

5. Monitor failure includes both dvnamic
and static failures. The monitor is a “series”
element in the system.

Define terms as

= total (sum) failure rate of the series
elements in a path

failure rate of the switching device
(includes contact failure)

failure rate of the monitor

A

L]

A

™

then, for n total paths,

313(’)=e Aml{e (AEAE

X Z 'ki)\)ll‘}-

=0

(9-33)

To illustrate the reliability gain provided
by this model, assume that the system
specification requires a high reliability for a
missior of ¢ hours. A nonredurdant system
therefore would have a reliability of

R (t)=e M, (9-34a)
since no switching is required. The redundant
system would have an s-reliability given by
Eq. 9-33.

R, (1) =R (1) (9-34b)

Define r = At and substitute for t in Eq.
9-33, except in the A term.

R,,(1)=exp(=\ t)exp [—(1+ "T'_)T]

neel

Z (1 + h—)n'
—_—A
=0 i!

(9-35a)

- = i RN

ANMCP 708-197

R, (r)=exp (-2 t)caqfc(2*(1+ »2n)

(9-35%)
where
¢3qf(x* ») = chi square Cdf with v
degrees of freedom
esqfe(x? v) = 1 - csqf(x* ») =
complement of the
csqf

(named in analogy with the error function)

The maximum reliability for a fixed r that
can be achieved, as n + o, is exp(—A,_ t).
Therefore, if A_ > ), (monitor is worse than
an clement) the optimum design has 1
element and no switching/monitoring.

Eq. 9-5 is a function of )\‘/7\. A, and 7.
The mission reliability of the redundant
system can be calculated as a function of the
parameters in Eq. 9-35. Table 9-3 and Figs.
9-8 and 9-9 show some of these calculations.

Table 9-3 shows how system reliability is
influenced by the number of paths, if the
switching device and the monitor have failure
rates that are 1, 1/10, and 1/100 as great as
the path failure rate,

In Fig. 9-8 the reliability of the redundant
system is given as a function of the number of
paths for various ratios of A_ /A when R, (t)

= 0.80; arbitrarily, A /A = 1/1000 Fig. 9-9 is
similar except that A _ /A = 1/1000, and A / A
varies.

The following general conclusions «  be
drawn from this paragraph:

1. As the number of redundant paths
increases, the mission reliability approaches
the reliability of the monitor,

2. When the failure rates of the path, the
switching devices, and the monitor are equal;
standby redundancy with two paths results in
a mission reliability considerably less than
that of a single nonredundant path.

3. For systems where the
switching-device and monitor failure rates are
less than the path failure rate, the greatest
increase in reliability occurs when one
redundant path is added to a single path.

911
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TABLE 9-3. EFFECT OF REDUNDANCY, CASE 13
1 488 488 488 952 952 952 18.1 18.1 18.1
1*y (139 (5.81) {18.4)
2
Cold standby; n elements total; imperfect switch and monitor; constant failure rates.
Failure probabilities listed in the body of the Table.
7T = 0.06 r =010 =02
n 7 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01
1* 488 488 488 952 952 9.52 18.1 18.1 18.1
(1°%) 10139 (5.81) (4.97) (25.9) (1.3 (9.66) (39.3) (21.3) (18.4)
2 5.32 0.654 0.174 114 147 0.578 232 4.05 198
k] 425 0.502 0.052 9.62 1 0.192 18.8 2.13 0.319
‘m":m only) 4.88 0.499 0.050 9.52 0.99% 0.100 18.1 198 0.200
L - T lb

* No monitor or switch

T2 X, \ = element failure rate

7 = XA = Ag/N for this Table

4. For a given path and switching-device
failure rate, reliability improvement increases
rapidly as the monitor failure rate decreases
and the number of redundant paths increases.
The same is true if the monitor failure rate is
held constant and the switching-device failure
rate decreases.

5. Important improvement in mission
reliability through redundancy results from
the use of switching devices and monitors that
are much more reliable than the path being
switched,

98 ACTIVE VERSUS STANDBY
REDUNDANCY

For the basic models s-independent
elements, perfect switching, and perfect
reliability of de-cnergized elements), the

9-12

** To show trends only, actually i1t 1s most impractical to have sviitch and monitor with only 1 unit

Ag A = switch and momitor failure rates, respectively

reliability equations (along with intuition)
indicate that standby redundancy is superior
to active redundancy.

However, elements are not always
s-independr at; switching is rarely perfect: and
certain parts and components can fail without
being energized. Therefore, it 1s most unlikely
that the simple standby system analyzed so
far will be representative of practice.

9-9 MAINTENANCE CONSIDERATIONS

The previous analyses of redundancy were
based on the assumption of unattended
system operation. If mamtenance s
considered, even greater rehability
inrprovements can be achieved. See also Refs.
17,
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, 100 ¢ An X e103
Am A= 10'2
T A/ A=10"
095 |
]
@
>. 0-% -
E
8
&
g 085 |
2
g
an
0.80 L \,-—//'_v - Am/k =10
0.75 1 1 1 1 J
1 2 3 4 5
Number of Paths n
Withiam H. Von Alver.,, Ed., Reliability Enginsering, © 1964
by ARINC Research Corporation. Reprinted by perm.<sion
of Prentice-Hall, Inc., Englewood Cliffs, N.J.
FIGURE 9-8. Mission Reliability for n Redundant Paths, Case 13, when
Ry(t) =0.80 (1 = 0.223) \;/\ = 0.001 (Ref. 2).
9-9.1 PERIODIC MAINTENANCE (Ref. 2)
100
Case 14. The following procedure will be
assumed:
095 o .
(1) Periodic maintenance 1s performed
o every T hours, starting at time 0. (2) Everv
;090 | element 1s checked, and any one which has
3 failed 1s replaced by a like-new and
3 statistically 1dentical component.
o8 | Maintenance 1s perfect 1n that
a repaired/replazed units are good-as-new, no
L dzmage 1s done to the rest of the system, and
080
the repaired system 1s good-as-new. In short.
every T hours the svstem 1s restored to
075 . | ) J hke-new.
. ) p . Defu. .
Tt - )T.0<7 <T
Number of Pg.rs n
where
FIGURE 9-9 Mission Relhability tor n Aadundant T = time smee  latest  (number )
Paths, Case 13, when R, (t) = 0.80 (1 - 0223) repair
AT H f
Am/N =000 (Ref 2) J = 0.1.2, .(repair number)

913
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: and for T = w=_ 1350, 100. 50, and 11 hr (Ref. 2J. <
R,, = R.(1) the sreiabilny Use Eq. 9-4a for R(2). i
functiony of 2 redundant system m Reiubabiy functioss follow- ‘
' which ssanlenmoe 3 performed x 3 = ,
every T boars 1. No mamtenatce: (T =) g
Let R(2) be the soedubiiy of the system RAD=R(1)=2c " 1%~ ¢ 7 3*,
fim':z;:ptﬁodt!x-nnomzm w done. (9-40) i
Theafory=1.7 =0. 2. Wnth muntenance: (T=jT+ 7:0< ¢
R (T =R (9-36) <7
i If;=2and s =0, the syem has 1o operate For 7= 150 hr: {
the firt T boars without fadure of any R\ =]% 15— ¢~3p[2e T
redundant coaficuration. Afler replacement ¥
of all failed Sements. another T heours of —¢ T30 941y
{ failure-free svstem operation are requmed: For T = 100 kr:
' R,(2T) = [R(TIF. (937 R0 =[2 ' -c *P(2e *7o°
If 0 < 7 < T. then an additsenal ¢ hours of —c B9 (942)
failure-free syvitem operation are required. and For T =350 hr:
i Rr(‘zr“ s)= lR(T,]:R(" ) (9-38a) RY‘(" = l?t 05 _ .1 rlze 7300 :’
In geoefil. c r*sol' (943)
! R..=R_(yT? =1 ={R(TI{Rsz) (9-38by -
: L U { ! For T=10hr:
i where R =(9, 0.1 0.2 -
| j=0.1.2,..:0<: < T. L E e | !
) 92, ?«100 __ .t
( - U LT [2¢ - 7 l-(944’ :
MTF,, = ‘Z_; R (txdt. The reliability functions are plotted 1n Fig. ’
" 9-10. From 0 to 19 hr. all five {unctions are ;
(t=T+7) xlentical s'nce ) = 0 over this period for each 2
! system. ]
5 MTF 1s cakeulated using Eq. 9-39. i
- T
r
4z mmr‘} j R(s)M
ro Rit)as
0 « 7o
o "’T’" T K /
. I ReTidT r §
‘ = [1] . i
v (9-39) / je 100 r30y,
3 _ o
3 +T 100 . 50
; The effect of periodic inaintenance can be 1 2T 100, T
: illustrated in the example that follows. Two
4 : identical elements with constant failure rates
g ¥ of 1/(100 h-) are placed 1n an active-parallel =150 + 3Jo¢ T 50 290, T7100
E configuration (1l-out-of-2:G. hot standby). 1 2¢ THO0 . . T30
. Compare the reliability functions and MTF’s (9-15)
]
5 9-14
|
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Hetiability of System A
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3

1 e i by

0 S0 100 150

20 230 X0 30 a0

Tare_ b

Wtam M, Yo Aden, B3, Artapd.ry Enpmennng, i 1964
try ARINC Rewerch Coporptaon. Peorymied Dy Duw=rabon
oA Premsoe-dall, Inr., Engprnpos Citts, X1,

FIGURE 2.10. s-Relability Functions for Actriepi sl Confipuatson Case 14 0n
1¥hich Mainnance Restored to Like-rew & Performed Eqary T hours (Ref. 2],

The MTF's lov the various T s follow';
T.hr MTF whr

i 150
150 179
100 208

50 304

10 1097

Considerable increase in MTF (and
reliability) can be achieved by a perfect
preventive maintenance policy.

9.9.2 CORRECTIVE MAINTENANCE

Reliability functions for some simple
2-unit redundant designs, for which repair of
a failed unit is possible, were developed by
Epstein and Hosfcrd, and are summarized in
this paragraph (Refs. 2 and 3).

At ¢t = 0, all elements are good. Repair
starts imniediately upon failure of a unit and
is perfect. The failure and repair rates are

~onstant (independent. of time). Three designs
will be considered — Cases 15, 16.2nd 17

Case 13, Two units in active redundancy.
The constart falure r.‘e of each unit is X and
the constant repair rate s 4.

LP (304

‘lf
“xs“)‘ s

1 2 (9-46)

5,2 'q3A2) - VAT T 60y + p2} (94Ta)

s, = 1930tp) + VA2 F 1y + 42] (94Tb)

MTF, =3 ix (9-48)

15 22

Case 16. Two unmits in standby

9.15

. ]
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redundancy. Constant unit -fasdure mate 1 ) Case 17. Two unmits 1n standby
COmiant unrt repair rate 15 . redundancy. 12 takes exactly  hours to repair
a:{ailed tnit. Constant faidure rate 5 ).
R, (= e3rt8’  1qetd el
111 » + . ¥ 0
3 3 (9-49} “::“’ - E .(.xn
1 |
5, ZHD s \F T DR (9500) (1-@-Dra). 9-52)
where
£, S g+ VT T D). (9-50b) [t'7] = prestest “integer<!(/r”.
1 = exact number of failuzes
A plot of the reliability functions for
MTF, =235 1951) these circuits is given 1 Fig. 9-11.
1.0
08
x
>
= 05 Cate - 17
§ (A7} =20
c94
Cate — 16
02 | w/A=20
0
0 5 w0 s 20 25 K 1] 35 40 45 50
At
P_ William H. Von Alwon, Ed.. Pai; bility Engineering, € 1964
5 by ARINC Research Corporation. Repnnted by permuson
L of Prentice-Hail, Inc., Englewood Cirlfs, N.J
5_ FIGURE 9-11. Comparison of s-Relisbility Fuections for Thrse Meintensnce
2 Sitvatio~s Casas 15, 16, and 17 (ref. 2).
E
k
3
E 9.16
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CHAPTER 10 RELIABILITY PREDICTION {GENERAL)
100 LIST OF SYMBOLS RR, = network s-reliability
R,.Py s-reliability of eclements

par 10-2.4, element s-redi-
ability

and/or systems (per.
16-3.3)

ABS =  elements (par. 10-4) mmm
A B, = coefficients ton
C.0 = event of contact Closure S; = et for minimalcut j
a.a,
D,.D,. or contact Open c.e,.x‘.:l.:(.l;p (
d.d.Pifj) = notation (par,10-3.4) -
: S.S.-S;_: gyctsﬁw- 104.2) XA, = failure rate; failure rate
of eiement a
k, 1.8 = sunreliability of binary v = not ¥; v is any event
2- unit or gate (par. 10-3.3) (per. 104.2)
F.= 1-R 0, = failure pdf for a (par.
¥ F,_,F, = failure probebilities ( par. _ 104.1)
g 10-3.3) 4, = Cdffora (par.10-4.1)
i K= 2N ) ¢, = Sffora(par. 10-4.1)
& m = number of chains (par. 21+ 1 = number of identical cir-
3 10-4.2) cuits feeding an MVT
ke M = number of parts in sys € = ..isamemberof...
! tem (par. 10-3.3) U = union
» MVT =  Majority Vote Taker
»', p = element s-reliability: par.

10.2.4. proportion of 101 INTRODUCTION

open failures

[ T S

ErR Y LT

N, S Y

P e

Wonouowouun

nou

T

R PRI, RIS GRS SO A T S
k) -
now

TT— TP YT RTY atar i Ew

number of units
probability of ¥; v is any
event (par. 10-4.2)
Pricontact fails to close}
Pr{contact fails to open}
s-reliability of MVT
s-reliability of element i j
probability of ...

1-p

failure probabilitics (par.
10-4.1)

1-py,

probabilities of failing
short or gpen

failure probability of
voter

1-p,

failure probability for
event i (par. 10-4.1)
s-unreliability of circuit {
s-reliability of chain (par.
10-4.2)

s-reliability of nonre-
dundant device {par.
10-4.2)

Three main forms of redundancy (Fig.
10-1) will be discussed in this chapter, namely

1. Nondecision redundancy

2. Decision redundancy without switch-

ing

3. Decision redundancy with switching.

Nondecision redundant structures do not
require extermal components to perform the
functions of detecting, decision, and switch-
ing when an element or path in the structure
fails. Examples are Moore-Shannon, single
mode series-parallel, single mode binomial,
and bimodal series-parallel,

Decision redundant structures without
switching require an extermnal element to
detect and make a decision when an element
or path in the structure fails, but do not need
an external element to perform the switching
function. Examples are majority logic, multi-
ple line networks, gate connector, and coding.

Decision redundant structures with
switching are those in which external ele-
ments are required to detect, make a decision,
and switch to another element or path to

10-1
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Single Mode

Sevins peraltel

Form of

Majority Logic

Muttiple Line

Without Switching

Gate Connector

Decision
With Switching

Ogperating

LIGURE 10-1. Redundancy Tree Structure’

replace a failed element or path. Examples are
standby, operating, and duplex.

For each of the redundancy forms, several
major characteristics vill be covered to permit
uniformity of comparisen. Each of the forms
will be defined and illusirated. Where feasible,
reliability block diagrums and the mathe-
maticud model for each form will be given. All
of the time-dependent models assume that all
components are good at time zero. In general,
the redundancy modeis will yield increasing

10-2

failure rate {IFR) functions for similar ele-
ments. See also Chapters 8 and 9.

10-2 NONDFECISION REDUNDANCY
10-2.1 MOORE-SHANNON REDUNDANCY

Moore and Shannon (Refs. 2 and 3) pro-
posed connecting the contacts of reiays, with
their coils connected in parallel, in physical
series-parallel circuits in such a manner that
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the resulting circuit acts exactly like a single
relay.

An idealized switch is defined as a 4-ter-
minal element where complete isolation exists
between the control signal and switching path
and which presents to the logic signal an in-
finite impedance ratio between desired and
undesired transmission states. The analysis is
not genenally applicable, however, to 2- and
3terminal devices such as transistors and
tunnel diodes. Furthermore, the Moore-
Shannon theory assumes only catastrophic
failures; hence, drift failures and aging effects
are excluded. Time is not considered at all.

Three assumptions aie made in developing
the mathematical model.

1. The failure of any element is s-inde-
pendent of the failure of any other element.

2. Only intermittent, complete failures
are considered.

3. The probability of failure of an
element is defined for each operation and is
the same for every element; time never
appears explicitly.

Fig. 10-2 illustrates three elementary, re-
dundant, relay-contact networks considered
by Moore and Shannon. If p is the probability
that a single contact will operate properly,
then the probability that two contacts will
operate properly is p2. The probability that
neither contact operates properly is 1 — p2.
Consequently, if two relay-contacts, physi-
cally in series, are used to connect a path, and
both are operated simultaneously, the redun-
dancy improves the reliability for opening the
path, but reduces the reliability for closing
the path. If four relay-contacts are connected
in a physical series-parallel arrang:'-ent, as
shown in Fig. 10-2(\), the probability of
opening the path is (1 — p2)2?, and the prob-
ability of closing the path is

R=1-(1-p?)?=2p? —p* (10-1)

The network illustrated in Fig. 10-2(B) is
the dual of the one shown in Fig. 10-2(A); the
probability of closing the path is

R=[1-(1-p)?]? =dp> = 4p? + p*

(10-2)
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FIGURE 10-2. Reley Networks {Mustrating Moore-
Shennon Redundency'

The network illustrated in Fig. 10-2(C) is
slightly more complex because of the addi-
tional contact X ; the probability of closing
the path is

R=2p2 + 2p% - 5p* + 2% (103)

These results may be generalized to in-
clude any complex redundant network
between two points. If m contacts are used in
a switching amray between two points and if n
of them constitute a subset of closed con-
tacts, the probability of closing the path is

R=3 Ap(1-p)" (10-4)

where 4, is the number of combinations of
the subsets which correspond to a closed
path. Similarly. the probability of opening the
path is

m
1-R=3) B, (1-p)yp~-" (10-5)
n=0
where B is the number of subsets of n con-
tacts such that if all contacts in a subset are
open and al! others closed, the path is open.

By using this approach, arbitrarily reliable
relay networks can be built from arbitrarily
poor (low reliability) relays, provided enough
of the poor ones are used.

Time can be introduced explicitly if the
following are assumed:

1. The 1ailure of any element is s-inde-
pendent of the failure of any other element.

2. All failures are permanent; i.e., when
an element fails, it remains in the failed condi-
tion.

10-3
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3. The relisbility of the elements s
known {as a functionof time) and is
the same for every element. Two failure dis-
tributions are defined:

q,(t) = probebility that a contact will fail to
close during the interval O to ¢.

P, (¢) = probebility that a contact will fail to
open during the interval 0 to £.

It follows that:

1. The probability thet a contact will be
closed whenever it should te closed during
theinterval Oto ¢ is

P.(t)=1—q,() (106)

This is the reliability of being closed, defined
for this interval.

2. The probability that a contact wiil be
open whenever it should be open during the
interval G to t is

q,{t)=1—p, () (10-7)

This is the reliability of being open, defined
for this interval.

The total probability of failure of the cir-
cuit in the interval 0 to ¢ is the sum of the
disjoint probabilities of failure to close and
failure to open. The probability that the cir-
cuit will fail to close at some time during the
interval Oto t is

4
K€} =3 B,(1- p,)p,*"
n=0
4 (10-3)
=Y. B,q2(1- q,)%"

The straight-line in each figure is the nonredundant case,
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-
C =event of closure (C = event of not- !
closure), :i
B, =B, =0,B,=2,B,=4,B, =1, g

Pr{C}=29%(1~ q,)* + 4q3(1— q,) + q%
= 22 — q¢. (10-9)

The probability of the circuit failing to open
at some time during the intesval O to t is

4
RO)= 3 A.Pi(1— p)"
n=Q
= 4pt(1— p,)t + 4p3(1— p,) + P}
= 4p2 — 4p3 + p} (10-10)
where
O = event of opening (O = event of not-

spening).

Then, the total probability of circuit failure in
theinterval Oto t is

Pr{F} = Pr(OuC} = Pr{D} + Pr{C}
= 2q2 - gt + 4p} - 4p} + p}
(10-11)
where
F= 0uC.

R R
1 1.0
|
1 i
0 0618 10 0 0.382
p
(A)

FIGURE 10-3. s-Reliability Functions for Redundant Relay Networks'
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The reliability functions for the circuits in
Fig. 10-2 are givenin Fig. 10-3. The figure
describes the reliability of the circuits as a
function of the reliability of the individual
relay.

For the network illustrated in Fig.
10-2(A), the reliability function (Fig.
10-3(A)) lies above the diagonal R = p for
values of p greater than 0.618. Therefore, the
redundant circuit represents an improvement
over a single contact if ti.- reliability of each
contact clcsing is better than 0.618.

For the second network (Fig. 10-2(B)). R
crosses the diagonal at 0.382, as shown in Fig.
10-3(B). The bridge network illustrated in
Fig. 10-2(C) has a symmetrical probability
curve which crosses the diagonal at 0.5 (Fig.
10-3(C)).

As shown in the discussion of reliability
gain, the reliability of a Moore-Shannon type
circuit can be degraded below some specified
value. depending on the topography of the
circuit. The use of these circuits in situations
where the performan-e characteristics of the
parts must be considered also may degrade
the reliability of the redundant structure as
compared with the single part.

(A) [

~ A —‘l Az - 1 A

t~ A [t A2 1 Azn "‘1L
—p b4 ! }-----0 p—o

|
—1 Ami YA Ama- Ama
Unit 1 Unit 2 Unitn

{8}

B" F—‘ B|2 P - B”, Path 1

Byt B2 —--— B Path 2

i
i
L' B Bpg pm—=~=—1 Bun Path m

FIGURE 104, Single Mode Series-parallel Redun-
dant Structures'

— e e————T P
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—1 P ~ P2 P M
-1 P21 L—'r b4 P2y p M P2n P"J’
— T 4 T T~ ¢
i : !
L 1
—1 P [ e V-1 Pron
Unit t Umt 2 Umit
Ap=1-qy

FIGURE 10-5. Reliability Block Disgram for a Single
Mode Series-paralie! Redundent Structure®

10-2.2 SINGLE MODE SERIESPARALLEL
'REDUNDANCY

The single mode series-parallel structure is
a group of n units in series; there are m par-
allel elements in each unit in which only one
mode of failure can occur (Ref. 1),

In the circuits of Fig. 10-4, A;; elements
are subject only to open-type failures while
B, elements are subject only to short-type
failures. Both of these circuits have the reli-
ability block diagram shown in Fig. 10-5.
Each of the elements is s-independent of each
other, with failure probability q;; for the ele-
inent i in the unit j, so that

R=3 (1= 4454y (10-12)

=1

10-2.3 SINGLE MODE BINOMIAL REDUN-
DANCY (k-out-of-n)

The reliability of a k-out-of-n:G system is,
from Eq. 8-1a,

R=2 (pi(1- py (10-13)
k

where

p = reliability of a single unit (see par.
8-2).

10-24 B!MODAL SERIES-PARALLEL
REDUNDANCY

A bimodal series-parallel redundant

10-5
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FIGURE 10-6. Schematic Diagram of a Diode and
Transistor Quad Bridge Network illustrating
Bimodal Seriesparalie! Redundency'

structure is one in which elements are con-
nected in a series-parallel configuration, and
which is susceptible to two modes of failure,
sucn as opens and shorts (Ref. 1). The reliabil-
ities are all conditional on the set of events
which are required for the elements to be con-
Ssionally s-independent. For example, if four
uansistors are on the same chip, they will not
be s-independent for many failure modes.
Included in this form are what are commonly
known as Quad configurations. A typical cir-
cuit is shown in Fig. 10-6 and thc reliability
block diagram in Fig. 10-7. The elements are
s-independent of each other. They can fail
either open or short.

The conditional reliability of the transis-
tor Quad, where a is the probahility of non-
failure of a transistor and p is the proportion
of transistor failures due to opens, is (Ref. 4)

R=g* 4+ 4a3(1 - a) 4 4a2(1— a)?
I I
(1+p(1- 2p)] + 8a(1 - a)3p(1- p)?
11 v (10.14)

where

I = probability that all four transistors sur-
vive ¢t hours of operation without fail-
ure,

II = probability that three of the four tran-
sistors survive ¢t hours of operation
without faiture while the other transis-
tor fails.

10-6

Il = probability that two of the four transis-
tors survive while the other two transis-
tors fail prior to time ¢ in a favorable
manner; i.e., failure of the two tran-
sistors does not cause configuration
failure. This probability represents the
sum of:

1.  4a%(1 — a)? (1 — pi2, the prob-
ability that two transistors short
prior to time t (hcwever. both
failures are not in the same leg of
the Quad): and
12a2p(1 — p) (1 —a)?, the prob-
ability that two transistors fail
prior to time ¢t where one is a
short and the other an open.

SHRO
A

E is usuaily an open or a short

1o

FIGURE 10-7. Reliability Block Diagram of a
Diode and Transistor Quad Bridge Network'

IV = probability that three transistors fail
prior to time t: two of the transistors
short and the other opens (however,
the two shorts are not in the same leg
of the Quad).

In general, for a network of identical ele-
ments in m paths, where success is neither an
open nor short network,

R=P-qlm = [1-(1 - q,)"]"

(10-15)
where
q, = probability of failing short, for an ele-
ment
q, = probability of failing open, for an ele-
ment.

The reliability equation for the bridge net-
work is a function of whether or not the ele-

-
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ments are polarized. Polarized elements allow
current to flow in one direction only.

For identical nonpolarized elements
which allow current to flow in either direc-
tion (Ref. 2)

R=(1-q,-q)la} —2¢>+ (1 - 4]
+q,i(1-¢)-[1-(1-¢q,)%]%}
+q,1(1-q,)2—[1-(1-q,)%]%2}.(10-16)

For identical polarized eiements which allow
current to flow in one direction only,

R=(1-gq,—4q,)[2¢3— 3¢+ (1-4q2)?]

+q,{(1-¢)* —[1-(1—gq,)%]%}
+q{(1—-q,)2— [1- (1 —q,)?)3}.

(10-17)

Although conditional reliability increases
as a result of using a Quad, several important
design factors must be considered, namely:

1. Using transistors in a Quad configura-
tion subjects them to more vigorous and
demanding parameter requirements.

2. The redundant configuration can drive
but one fourth the load of the nonredundant
circuit.

3. The Quadding approach is inherently
a slower one, increasing signal propagation
time by at least 2:1.

4. The redundant design will dissipate up
to, and possibly more than, four times the
power of a single transistor, il maximum
speed is desired.

5. The Quadding layout usually will
demand a greater supply voltage and, there-
fore. cause the minimum power ratio to be
about 2:1, redundant to nonredundant.

6. Failure of any unit of a Quad can in-
crease semiconductor heat dissipation per unit
up to four times. A direct consequence of this
is requiring the lowering of ambient operating
temperature to keep semiconductor junction
temperatures below the danger point.

10-2.5 SUMMARY TABLE

Table 10-1 summarizes the important
characteristics of component redundancy for
different combinations of short to open fail-

- Pt e .- . - mree-
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ure when the elements are susceptible to
both. The failure conditions, reliability equa-
tion, approximate probability of failure, and
impedance variation due to redundancy are
presented.

10-3 DECISION-WITHOUT-SWITCHING
REDUNDANCY

10-3.1 MAJORITY LOGIC REDUNDANCY

Majority logic is a form of decision redun-
dancy for which the correct output is as-
sumed to be the one found in a majority of
the channels. The concept of majority logic
was first proposed by von Neumann and has
since been enlarged upon by many authors.
Von Neumann’s original concept required
extremely high redundancy to achieve high
reliabilities, but later techniques give high reli-
ability with a rather low degree of redun-
dancy. Typical structures are shown in Figs.
10-8 and 10-9.

The probability of success for the major-
ity group is, from Eq. 8-17,

2n+1

Y. (Bnrh)pign1ei(10.18)

i=n

pn = p(-

where
p = probability that a circuit is oper-
ating properly
q = (1 ~ p) = probability that the cir-
cuit has failed

p, = probability of success of Majority
Vote Taker MVT

2n +1 = number of units.

w r- r. 1

3
(3]

8 lnput M 2 Output
H < —_ MVT

D Oor1 Oort
2
o - 2n ¢ 1

\..

Computing Blocks
Majonty Logic, Equal Weights

MVT  Majonty Vote Taker

FIGURE 108. Basic Majority Vote Redundant
Circuit!
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TABLE 10-1. COMPONENT REDUNDANCY!
Maximum
Approximate | Impedence
Component Failure Relisbility Probebility Variation
Configuration Conditions log =P IP of Fsilure Due to
Py =P IP,* Pr<<1 Redundancy
1
-{ Z Short or open R P, +P " 0%
2 Single open or two R2+2RP‘ P, -50%
- Z z shorts. Used where o,
<<0.5
3
— 2 . . 2
Single siort or two R“+2RP, 2P, +100%
opens. Used where Py
2 >>05
—
4
- z
-
1z Single short or two R+4R%pP 6P 2+4p, | +3313%
opens. Used where Po
_@ >>05
] Z
8
r Z
Z Single short or three R‘+4R3P°+632P° 4P°2+4P. +100%
opens. Used where o,
| 2 >> 0.5
Y4
6
‘ Z Two shorts in same leg ﬁ‘+lﬂaP°+4naP' 4, 2+1’I’.2 +100%
or one open in each leg, +12R2P,P, +2R2P,
z z Us 1wherep, <0.5 +4R2P, 2+ 4RP,2P,
+8 RP,2P,
7 Three opens or opens in
2 2 both elements con-
nected to either input 4 s 3 2 2
or output nodes. Two R +;R F o+;R 2Po AP EL2RE +100%
z z shorts in same leg or +4R :5"‘2” Py 2
shorts at alternate ends +12'72 FoPy+8RFZP,
of two legs. Used whare 4RPy2F,
> 05
*Po(Pg) is the conditions! probability of the component opening (shorting) given that the component fails.
**R + Py + Pg = 1 for single element,

10-8
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FIGURE 10-9. Majority Vote Redundant Circuit
With Multiple Majority Vote Taker'

T

The lower degrees of redundancy give the
approximal~ failure probabilities listed in
Table 10-2.

TABLE 10-2
APPROXIMATE FAILURE PROBABILITIES FOR
MAJORITY LOGIC REDUNDANCY'
2n +1
{Degree of Approximate Failure
Redundancy) Probability of Circuit
3 q.+3q2~2¢
5 q, + 10g3 — 15¢* + 6q°
7 G, + 35q% — 84g5 + +++
9 q, + 1265 — 420¢° + ---

q,, = failure probability of MVT
q = failure probability of logic element

Using higher degrees of redundancy will
not substantially improve overall reliability,
since the majority vote taker (MVT) reliabil-
ity soon becomes the limiting factor. Even for
threefold redundancy (2n + 1 =3), q,. is the
major caus of failure if q is reasonably small.

When majority logic is applied to each
block, and every MVT is triplicated except
the last one, the resultant failure probability
for the general case, using a (27 + 1)—{old
majority logic and m blocks, is as follows:

AMCP 708-197
1-R=(1-g,)
3 2n+l
x|1- ¥ (% Y)aipgmer
L i=n+1
2n+1 ;
x{1- ¥ @)+, - 99,
i=n+1

m -1
(1 - qb - q" + qbqu)zn‘ 1 -‘]

(10-19)

where the notation is shown on Fig. 10-10.

Assuming that all the failure probabilitic., are
reasonably small, this becomes

1-R~q, +()) @mre?
+(m= () (g, +amp?

n+l

(10-20)

where ¢ is the probability of failure for the
nonredundant system.

For threefold majority logic (n = 1), the
probability is
1—-R=~q. +3q/m)* +3m - 1)(q,. +q/m)
(10-21)
The MVT is considered ideal if A m_t < 1
where A is the failure rate of the MVT and ¢
is the mission time. If the MVT is ideal, rather
than infallible, and if the number of MVT {ail-
ures in a given length of time obeyvs the
Poisson distribution. thea

pity =’

(10-22)

where p_ is the probability that a vote taker is
working properly.
It is assumed that the output of a nonfunc-

tioning vote taker is the complement of the
correct output.

If the failure rate of the MVT’ is too
large to be neglected, redundant MVT’s can
be used. In this case, the failure rate of an
individual circuit can be considered to include
the circuit and the vote taker feeding that

10-0

B ——— TR T T VW e

= anene as o ,rwwﬁ-mmuss«?ﬁ

P oy
o o s Bnsabowink -n A o Ran v e e e s WS AR - v

© R B o SR o




cmm “-Downloaded from http://www.everyspec.com

T T Y e WY

AMCP 706-197

circuit. The overall system then becomes
equivalent to a system using nonredundant
ideal MVT’s. If the probability of survival for
an individual circuit is

p=p.p, = (e'o\.,t)(e'x,,t) - c'(.\,_ -i-lu)l‘

*

{10-23)
then

R= ~ 2n+i in2nel-i "
[2; Ci) av ] "(10:24)

which is equivalent to the probability of suc-
cess for m majority groups.

It can be shown that the maximum reli-
ability is achieved with nonideal vote takers if

(Ref. 5)
ALAL = 1/(2nt]) (10-25)

where

failure rate of the circuit

Y
X. = failure rate of the vote taker

v

(2n + 1) = number of identical circuits,
(10-26)

It is usually necessary to carry system out-

put on a single line, in which case the redun-
dancy scheme proposed ty Moore and Shan-
non could be used to improve the reliability
of system output, thus eliminating the final
vote taker from the analytic expression. This
form of redundancy is usually ascociated with

Inputs

binary inputs and ouiputs. It can be applied
in situations that call for either intenmittent
or continuous operation in time. Some con-
clusions which can be drawn from all this are:

1. Assuming ideal vote takers, a digital
system will be most reliable if majority logic
is applied at as low a level as possible, i.e.,
when the system is divided into as many digi-
tal subsystems, each followed by a majority
vote taker, as possible.

2. On the other hand, it is clear that the
MTF for the system will always be less than
the MTF for the individual circuit. In the
limit as n—+oo, the system MTF can be 0.69
times the MTF for the individual circuit.

3. The use of redundancy and majority
logic gives the greatest improvement in reli-
ability in the case of large systems, i.e., in
systems for which it is possible to acheve
large values of m.

4, The full reliability improvement can
be reslized only if all circuits are working
properly at time t = 0. This causes a checkout
and repair problem.

5. Unless the nonredundant fault prob-
ability q is small, very high degrees of redun-
dancy are required to reduce system failure
probability. For ¢ > 0.5, any degree of major-
ity logic redundancy will actually ' .-.grade reli-
ability, although q > 0.5 is not very realistic
for anything but deep-space probes.

6. If nonredundant MVT’s of limited
reliability are used anywhere in a redundant

MVT = Majonity Vote Taker
Failure probability is shown for each element.

FIGURE 10-10. Reliatility Block Disgram for Circuit With Threefold Majority Logic'
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system, they will constitute for some period
of time the most likely source of syst.m fail-
m‘

1032 MULTIPLE LINE REDUNDANCY

Multiple line ndundancy has been studied
extensively by Westinghouse and is one of the
most efficient types of circuit redundancy
(Refs. 6 and 7). It is applied by replacing the
single circuit of a nonredundant network by
nonidentical circuits operating in parallel,
where m s called the order of the redun-
dancy.

The reliability improvement achieved by
these redunidant circuits depends on the abil-
ity of the network to experience circuit fail-
ures without degradation of the network
operation. The use of restore:s within the net-
work provides this characteristic. The restorer
consists of m restoring circuits which, when
operating ¢orrectly, can derive the correct
output from k of m correct inputs. A typical
circuit is shown in Fig. 10-11.

A reliability model can be developed
based on the following assumptions:

1. The circuits in the network are s-inde-
pendent.

2. Only an approximation to the exact
reliability will be given, and it is based on
techniques described in Refs. 8 and 9. The
approximation is good if the reliabilities of
the circuits in the network are close enough
to one.

3. The approximation is based on the
concepts of minimal cuts, discussed previous-
ly, and coherent systems. A system is coher-
ent if it meets the following four conditions:

a. If a group of circuits in the system
is failed, causing the system to fzil, the occur-
rence of any additional iailure or failures will
not return the system tc a successful condi-
tion.

b. If a group of circuits in the system
is successful and the system is successful, the
system will not fail i some of the failed
components are returned to the successful
condition.

c. When ali the circuits in the system
are successful, the system is successful,

AMCP 708197
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FIGURE 10-11. Order-three Multiple Lin2
Redundant Network'

d. When all the circuits in the system
fail, the system fails. The system shown in
Fig. 10-12 is an example of a coherent
system.

The lower bound to system reliability is
the rrobability that none of the system mini-
mal cuts fail: for the sample in Fig. 10-12, it is

R, ~(1-Q,Q;)1-Q,Q)(1 - Q,Q,Q,)
(10-27)

where
R, = system reliability
Q, = the probability of failure for circuit i.
This equation is approximate because the fail-
ures of minimal cuts are assumed to be s-inde-
pendent which is generally not true, since one
component may appear in several minimal
cuts.

If minimal cut j is denoted by sei-S; then
11 Q, is the probability of failure for minimal

nzSj

© ‘
3
FIGURE 10-12. A Coherent System'
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cut j. Thc lower bound of the system reli-
ability is
<
R =M{1-1
s = 11 E’IQ,} (10-28)
where

¢ = number of minimal cut sets
€ = “is a member of”.

Thus, the determination of the lower bound
on reliability requires that the minimal cuts of
the network be identified. In a multiple line
network with restorers, a cut is any group of
circuits whose failure causes the outputs of at
least one restored function to have (m — k +
1) or more failed lines. This would constitute
a retwork {ailure.

The minimal cuts of a multiple line redun-
dant network have three choracteristics that
are sufficient to establish their identity:

1. All the members of the minimal cut
are circuits in a restored function or restorers
that are the input sources of that restor.d
function.

2. The failure of each member of the
minimal cut will cause one output line of the
restored function to be in error, and each
member will be in a different position.

3. The failure of a minimal cut will cause
exactly (m — k + 1) -output lines of the re-
stored function to be in error; hence, a mini-
mal cut will have (m —k + 1)-members.

If all the sets of circuits that fulfill these
characteristics are listed for each of the re-
stored functions in the network, all of the
minimal cuts of the network and the lower
bound for the network reliability can be
found.

The improvement in system reliability is
comparable to the improvement in the reli-
ability of a circuit whenr a particular element
is made redundant. The improvement will not
be of the same magnitude, because of the
addition of restorers in the multiple line net-
work,

Multiple line redundancy results in im-
proved reliability of the system unless the
individual circuit reliabilities are very low.
Low circuit reliabilities cause the restorers to
choose the wrong value if k of the m circuits
have failed.

10-12
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The lower limit approximation given for
the multiple line network is not good if the
circuit reliabilities are not close enough to
one. If the order of the redundancy exceeds
three, the determination of the input sources
becomes quite difficult. Boolean techniques
can be used for determining the input sources
of a function.

1033 GATE-CONNECTOR REDUN-
DANCY ’

Gate-connector, or gateconnected, redun-
dancy is a combination of several binary cir-
cuits connected in parallel along with a circuit
of switch-like gates which setves as the con-
necting majority organ (Refs. ! and 16). The
gates contain no components whose failure
would cause the redundant circuit to fail, and
any component failures in the gate connector
act as though the binary circuits were at fault.

Gate-connector redundancy applied to

four units in paraliel and a 4-element network
for the gate connecior is shown in Fig. 10-13.

Inputs

FIGURE 10-13. Circuit lllustrating Gate-connector
Redundancy'

For this circuit, the following assumptions
and nomenclature are used.

1. [ = probability of failure for each
binary unit

2. g = probability of failure for each gate

3. Failures are s-independent

4. If the circuit is closed when it should
be open, it is a Type | failure

5. If the circuit is open when it should
be close”! it is a Type I failure,
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The output with Type 1 failures should be
zero, but may be, mistakenly, one. The out-
put of G, will be one if unit 1 fails, G, fails,
or both fail. The probability of this -event
taking place is

F,,=1—-(1—f X1-g,) (1029

where the subecript 1 designates Type I fail-
ures. When a one is received from G,, a one
will he transmitted to the ocutput if unit 2
fails, G, fails, or both fail. Therefore, the
probability of getting a one in the left channel
is

Fi,=1-(1-f,N1-g)*.(10-30)

Control

Gate failures are assumed
to include shorts between
control and output.

FIGURE 10-14. Gate Unit'

Now we must investigate what happens
when a zero is at the output of G, and both
unit 2 and G, fail. Whether a failure occurs or
not depends on how the gate circuit fails. Fig.
10-14 shows a gate v.ait with leads labeled
control, input. and output. In the gate-con-
nector circuit, the control 1s connected to the
output of the binary unit, and the input and
output connections are used in the connector
circuit. The gate in»ut is connected electri-
cally to the output only if a one is present on
the control. Now, if it is assumed that only a
one can be obtained from the output whena
one is present in the input, the circuit will not
fail when G, has a zero on the input and uait
2 and G, fail. However, if it is assumed that
the gate unit fails in a shorted condition in
such a way that a one is obtained at the out-
put when a zero is on the input and a one is

ANC? 708197

o#i the control element, the circuit will fail if
unit 2 and G, fail. This latter case will be
assumed and, when this is taken into account,
the probability of failure for one channel
becoines

Re=1-01-fX1-g))?
+’(l-fg)(l—l1)f|'; ’

and the probzbility of failure of the circuit of
Fig. 10-13 due to Type I failures is

F,=1-(1-1-Q-f{i—-g)N?
- (l-f[ )(l_ll)flll }’ N (10-32)

The failure probability for Type ! failures
will be simpler. When the output should be
one and the failures make it zero, the extra
term does not appear and the equation for
Type 11 failures is simply

F,=(1-[1-1;)1-§g)]%}%.
(10-33)
If it is assumed that f, =f, and g, = §&,, it
cannot be shown that one of the expressions
is greater ihan the other for all valucs of f and
&; but in the region of values of f and g where
reliability improvement is obtained, F, > F,.
Let F be the upper bound of failure prob-
ability for the redundant circuit, and let f and
& be the greater of the Type I or Type 1
failure probabilities. Then, in the region
where reliability improvement is obtained,

F={1-11-N1-8))*}%.

(10-34)

If a nonredundant system with reliability

R, i+ divided into M s-independent parts of

equal reliability, part M of the system would

have 4 reliability equal to the Mth root of

R,. ‘The reliakility of part M of the nonre-

dundant portion: of the sysiem corresponds to
(1 -- f) in the equations. Thus,

1
R,M =(1-p).

(10-31)

(10-35)

The rediability of the redundant system is the
reliability of one redundant unit raised to the
power M. This gives the following equation
for reliability:
2
Py = 1= [1- (1= R, )2},
(10-36)

10-13
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There is an optitnum value of Af. In the
region of g and R, where reliability improve-
ment is obtained, the maximum value of M
should be used. In practice, it is difficult to
use single active element circuits as s-inde-
pendent circuits. A reasonable s-independent
block in a systein would consist of two active
elements. Such circuits would include {flip-
flops, clock gen-rators, two-way logic circuits,
and so foila.

If a machine consists of K active element
circuits, M = K/2. A gate is assumed to be
equivalent to one active element circuit. When
this is substituted into the preceding equa-
tion, the result is

3 1)K
PR = [2R()K - Rol\'

o4

(10-37)

Since the gate-connector redundancy can
be applied at a low component organization
level, it is suitable for use in conjunction with
the Moore-Shannon redundancy.

Critical comporents that require better
than 50 percent component-value tolerances
can be made redundant by the gate-connector
redundancy in a machine that is made redun-
dant by Moore-Shannon redundancy.

A factor which should not be overlooked
when designing with gate-connector redun-
dancy is that the switr.like gate connector
must contain no components whose failure
would cause the redundant circuit to fail.
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10-3.4 CODING REDUNDANCY

Coding redundancy is a method of incor-
porating pessive self-repair in order to im-
prove reliability (Refs. 1 and 11). It is used
for processing unreliable information in logi-
cal networks such as computers. Binary sig-
nals that are to be used cs inputs can be
checked using coding redundancy.

Under certain restrictions, the type of
coding redundancy proposed by Tooley (Ref.
11) avoids the usual complexity requirements
for redundancy.

A model for an AND gate is shown in Fig.
10-15 in two equivalent forrns with noise,
denoted by P(0|1) and A(10), added. The
restrictions assumed in the mcdel by Tooley
are:

1. The errors for each of the logical
devices must be s-independent.

2. The logical function of a device can-
not be changed by some condition in one of
its inputs.

The method for increasing the reliability
of combinational logic networks can be sum-
marized as follows. A given network designed
to compute a function F(x™ ) is replaced by
one that is designed to compute a new func-
tion H(x'). H(x*) is defired as that function
which is equivalent to successive applications
of a decoding function d(x%), a desired com-

P-1
J o Pam .
P=1 \
/o/,/
P=1

P{ol0) 0

FIGURE 10-15. Two Models for a Noise AND Gate'
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putation F(x™ ), and an encoding functicn e
such that

H(x*)=e{F{d(xt)]} (10-38)
where
H(x%) = {H1 (x%), Hg(")y ooy H. (%)}

e{Fld(x*)]} = [e, {F{d(x")] },
ey {(Fld(x9)] 1, ... ,e, {Fld(x%)] }]

e, (F[d(x*)]} = ¢, {F, [dx")],
Fy{d@x®)], ..., F [dxV)] }

F,[d(x%)}= F[d, (x*), dy(2?), ... ,d , (x%)]
d,(x*) =d,(x},x8, ..., 2}) . (10-39)

Here, d(x?) is the decoding function corre-
sponding to some error-correcting code that is
sssumed to have been used on the output of
the preceding network, and e is the encoding
function corresponding to some code which,
of course, also must be accommodated on the
input of the following network. The net result
is to replace one network by another where
the two networks are related through two
error-correcting codes, such that, in the
absencz of errors, a given input and output
state of the second is the encoded form of the
corresponding input and output states of the
first.

The performance of devices using coding
redundancy can improve the correctness of
output signals and also the engineering con.
fidence of the individuals using the equip-
ment. If the decoding function becomes
complex, the usefulness of coding redundancy
is minimized, and this appears to be the major
drawback of coding redundancy.

To estimate reliability improvement, con-
sider first a system model that will be used to
estimate a system error probability. In this
model, a system consists of N combinatorial
networks arranged in an arbitrary order (any
combination of series and parallel). Network j
has n, outputs being generawd by devices
having a fan-in of ¢, each of which has an
error probability of p(Q,). Let a; be defined as
the probability that more than ¢; of the n;
outputs are in erroi, where ¢; is the maximum
number of errors that can be corrected by the
code used in the output of network j. Assume
that a system error is obiained if one or more
networks generate an output having more
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than ¢; errors, then P, the probebility of a

svstem error, can be calculated as
N
P=]— ‘l;ll 1-—a) (10-40)
where

o= 3 GPEM1- P

‘-f101
~ (¢f +1p'" (1)

np(g;) € 1. (10-41)

Let a measure of improvement I, the
improvement factor, be defined as the ratio of
the system error probability before and after

coding,

I=pyip, (10-42)
where
B,A are subscripts refer:ing to Before and
After coding, respectively.

If, for simplicity, it is assumed that the sys-
tem is sufficiently homogeneous that all the
networks have the same number of inputs and
outputs and ithe same error-correction ca-
pecity(n, = n,¢, = ¢,,and t, = ¢,, for all i and j),
then
a=a =a (10-43)
forall i, j, and
p=1—(1-a)¥ = Na, (10-44)

Na<1.

Thus,
I=agla, . (10-45)

A detailed explanation of the practical
problems associated with this type of design is
presented in Ref. 12,

104 DECISION-WITHSWITCHING RE-
DUNDANCY

104.1 STANDBY REDUNDANCY

A system in which a component or unit is
standiing by idly (cold standby) and operates
only when the preceding unit fails is said to
be using standby or sequential redundancy
(Refs. 1 and 13). A standby system usually
requires failure-sensing and/or switching net-

10-15
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input

FIGURE 10-16. System Illustrating Stenduy
Redundarcy’

works or devices to put the next.unit inlo

operstion,

Fig. 10-16 shows two elements where A is
operating .and B is in standby redundancy,
waiting until A faiis, and S is the sensing and
swiiching mechanism. The device operates in
‘the following four mutually exclusive ways:

1. 8 is operating properly. It monitors A,
and if A {ails, it tums B on, and the device
operates until B fails (Case 1}.

2. S fsils by not going abie to sense
andjor switch, and when it fails, 4 is
operative and she device fnils when 4 fails
(Cuse 2).

3. § fails and i failing it switches to 3.
A is still operating when S fails, but
the.device fails when B fails {Case 3).

4. A is operating and § fails, The signal
path through § becomes cpen of short
and the entire device fails a¢ the time S fails
{Case-4}.

The notation for Egs. 10-46 through
10-49 follows:

faituve pdf for «, x = 4,88

= fgilure C4f lor a, « = ARS

1-¢

probability thet S fails and the switch

stays on A

Gy = probability that S faile and the switch
goesto B

: probability that S fails in such a way

that the signal path is shorted or open

qi+Qz+Qa=1 .

a
2
oW ouou

o]
w
]
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For Cage 1:
t l-l’ -
Q)= ®,(t,)0, (t, )¢, (25)dt, dt,
3'0 tl'O
(10-46)
For Case 2:
14
GO=a, [ opt)0, 000, . (1047)
te=0
For Csse 3:
¢ ty
Relt) =g, #5(t3)
2 ‘:":: . { AL2 .’/: vo
Byt )05 (8, )2, dty . (1.0-48)

For Case 4:

¢
Q{0 =4q, f B4(t)0s(ty)dt, . (1049)

t=0
For the entire device
QU =Q, (D) + Qu(1) + Qa1t) + Q(2) .

(10-50)

For the specisi case of the exponential
failure law where Ag is the failure rate of the
switching mechanism, and A = A, =), is the
failure rate of the two syster:z A and B,
standby redundancy is better than two sys-
tems in parailel if A > A\g. If A = Ag, the two
types of redundancy are equal; and if A <),
parallel redundancy is surerior.

The gain for a specified mission can be
measured in terms of the ratio of the reliabii-
ity of the stracture with standby redundancy
to the reliability of alternate structures.

10-4.2 OPERATING REDUNDANCY

In operating redundancy, s-independent
identical units operate simulianecusly with a
common input (Refs, 1 and 14), A failure
detector is associated with each unit, and a
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switch is connected to the ouiputs. All units
are operating initially, and the output of one
unit is used until that unit fails. The switch
then steps to the next operating unit and re-
mains there until that unit fails. .

Fig. 10-17 shows a typica! switching cir-
cuit in which C represents the redundant com-
ponents and D the individual detectors. The
reliability block disgram has the same form as
Fig. 10-17.

The following assumptions are made:

1. There are m chains ordered 1, ..., m
and all m operate from the initial time until
each fails.

2. The stepping switch is connected so
that its inputs are the outputs of the m
chains; the output of the switch is the output
of the system. The switch operates sequen-
tially, starting with chain 1. The switch indi-
cates when all m chains have failed.

3. A failure-detecting device operates in
conjunction with each chain and performs the
following functions:

a. If failure occurs in the chain to
which the switch is connected, a signal is sent
immediately to the switch, causing it to step.

b. If a failure occurs in a chain to
which the switch is not connected, a signal is
stored; and if the switch steps to that chain, it
is signaled to step once more.

4. No time is consumed by the failure-
detecting and switching operations.

f. The reliability of a chain is the prod-
uct of the reliabilities of its components.

Input

L L
Cc c c Cc
—te ) { ) |
D D D o]
= 3 s 1
m=4

Output

FIGURE 10-17. System of m Redundant Chains
Illustrating Operating Redundancy'

-3 — T ey -
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The reliability of the system depends on
the reliabilities of the chains, the failure
detectors, and the switches. For the detectors
and switches, there are two modes of behavior
with which reliabilities are associated, i.e.,

1. D, and S, (Fig. 10-18): the device
operates when failure occurs. This function
can be performed only once for each chain,
and the probeability is defined for a single
operation that takes place in negligible time.

2. D, and S, : the device does not spon-
taneously operate during a period of time in
which no failure occure, Thie type of failure,
like = chain, is defined for the lengih of time
required for the machine to complete the as-
signed task.

Therefore, the following probabilities are
defined:

1. R_ = srelichility of the chain, i.e., the
probability that it performs its functions ade-
quately for the duration of the assigned task.

2. P(D,) = conditional probability that
when a failure occurs in a chain, the failure is
detected and a signal is sent to the switch
under conditions a or b. A consideration in
P(D,) is the probability that the switch con-
trol is connected to the error detector for the
chain at which the switch is positioned.

3. P(D,) = conditional probability that
when no failure occurs in a chain for the dura-
tion of the task, no signal is transmitted to
the switch when it is positioned at that chain.

4. P(S,) = conditional probability that
when tlie switch receives a failure signal, the
connection at which it stands is broken and a
good connection is made to the next chain.

5. P(S,) = conditional probability that if
the switch does not receive a failure signal for
the duraticn of the task, it does not step at
any tim~ during the run. If it does step, it
makes contact on the next chain.

6. P(S,) = conditional probability that if
a good conneciion is made every time the
switch steps, a good connection exists be-
tween some chain (or the device indicating
system failure) and the system output at all
times during the run. Switching occurs in zero
time.

The reliability of the system of m redun-
dant chains is defined as the probability that
it performs the assigned task successfully.
This occurs if, for the duration of the task,

10-17
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No Failure Failure Failure No Failure i
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Swi'::him Switching  Switching p’{o Switchi h!o No Swi !:h
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1 'y &
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Success Failure Out Failure Failure Out
‘' [
To next stage "

FIGURE 10-18. Failure Disgram of a Chain'

the switch constantly makes i good connec-
tion to a chain that is functioning adequately.
This can take place in m mutually exclusive
ways, corresponding to the final connection
to the m switch contact.

The possible modes of behavior of a chain
are diagrammed in Figure 10-18. Successful
operation through a given chain requires that
the chain function adequately, R,; that the
failure detector not signal an error, P(D,);
that the switch not step simultaneously while
connected to this chain, P(S,); and that the
switch contact remain good, P(S,). The prob-
ability of successful operation is

R, = R P(D )P(S, )P(S,).. (10-51)

The use of one value of P(S,) for the
probability of no spontaneous stepping of the
switch from any position is an approximation.
A precise analysis would use P(S,) as pre-
viously defined only for the first chain with

10-18
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successively larger values for this probability
for chains 2, ..., m. The final computed reli-
ability is actually somewhat lower than the
correct result. However, since the probability
of spontaneous switching in all practical appli-
cations is very small, the more precise analysis
does not appear to be warranted.

A stepping of the switch can occur in
three ways (the symbols are for probabilities
rather than for events):

1. The chain fails (F, = 1 — R_); the
detector signals failure, P(D, ); and the switch
steps, P(S,).

2. The chain does not fail, R_; but the
deiector erroneously signals failure, P(D, ) = 1
— P(D, ); and the switch steps, P(S, ).

3. The chain does not fail, R_; the detec-
tor does not signal failure, P(D,); but the
switch steps spontaneously, P(S,) = 1 —
P(S,).
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Thus, the probability of one stepping of
the switch is
a=(F,)P(D,)P(S,) + R, P(D,) F(S,)
+ R, PS,)P(D,) (10-52)

There are several modes of hehavior of
one chain that lead immediately to system
failure without any failure indication, due to
a bad switch contact P(5,), to failure of the
switch to respond to an error signal P(S,), or
to failure of the detector to indicate failure
P(D,). in addition, there are modes of behav-
ior in which the detector and switch both
make errors that cancel each other. These
second-order effects will be arbitrarily ruled
out.

The probability of successful operation
with the final connection to switch-contact i
is equal to the probability of . — 1)-steppings
of the switch times the probability of success-
ful operation through one chain, or ati1) R, .

Then, the reliability of the system is the
sum of the probabilities for the m switch con-
tacts:

m l_am
R:Z a(i-l)Rl=Rl(1_a )

(10-53)
i=1
where
R, =R, P(D,)P(S, )P(S,)

R, = ﬁ; R, (10-54)

Becauseall P(-)< 1,
R<P(S,) (10-55)
R<1-(1-R,)™. (10-56)

In the present application, tne device,
with no redundancy, is consideres to have a
reliability R,. It is assumed that it is possible
to break the device up into p groups of equal
reliability, R,!/?. It is further assumed that
the failure detector for the complete device
consists of p units, each associated with a
group, such that indications of failure origi-
nating from any of these units are equally
probable. Then, if P(D,) and P(D, ) are prob-
abilities associated with the failure detector
for one complete device, the corresponding
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probabilities for the units associated with a
group will be P(D,)'/» and P(D,)! /7. If each
chain is made n times redundant, the system
reliability, for perfect failure detection and
switching, is

Rg = [1--(1 —R,'")*}? . (10-57)

The exact equations are complicated and are
given in Refs. 1 and 14.

Operating redundancy is used in contin-
uous time applications primarily, but it can be
used in intermittent situations if the failure-
detecting device is capable of signaling the
switching mechanism at the proper time.

The performance of these systems in
many instances will be limited by the reliabil-
ity of the failure-detecting and switching
assemblies.

Tables and charts given in Ref. 14 can be
used in designing systems with operating re-
dundancy: Given an estimate of the initial
unreliability for a nonredundant system and
the tolerable unreliability permitted in the
final system, the degree of redundancy and
the number of chains that will meet the speci-
fications can be estimated from the appropri-
ate curves in the reference.

For initially unreliable systems and a
moderate degree of redundancy, high reliabil-
ity can be achieved only by applying the re-
dundancy to relatively smali units. Imperfect
switching limits the reliability attainable in all
cases such that the uareliability is not a stcad-
iiy decreasing functiun of n, but has a definite
minimum beyond which it increases.

10-4.3 DUPLEX REDUNDANCY

Duplex redundancy uses duplicated logic
circuits operating in parailel (Refs. 1, 13, and
15). It has an error detector at the output of
each circuit which detects any noncoincident
outputs and starts a diagnostic procedure.
This procedure may last from a few micro-
seconds to a few milliseconds, depending on
the diagnostic process chosen in the design.
Figure 10-19 illustrates the duplex scheme.

If the exponential failure law is assumed,
the reliability of the system when duplex
redundancy and error detection is used is:

10-19
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A _ o L The main disadvantage of duplex redun-
dancy is the need for a short diagnostic proce-
nd dure in the event of failure. Also, in order to
avoid losing cssential information, it may be
Disg- Error necessary to record the contents of important
m" ] Detec registers and the input data. In this way, after
an error is corrected, the original situation can
and be restored.
| J 4
az‘ I I REFERENCES
To Computer

or External Control

FIGURE 10-19. lllustration of Duplex Redundancy’

R=e7(l+ ear — g1 +ar) (10-57)

where
L X (tailure rate of individual circuit)
the number of circuits in scquence

failure rate of error detector
failure rate of individual circuits,

Dugplex redundancy can be used ir Aigital
computer logic circuits to protect against
faulty outputs from basic logic el:ments.
Duplex redundancy should improve digital
system reliability. However, the system will
not automatically correct intermittent errors
or two simultaneous failures.

Features of a duplex logic redundancy
system are:

1. Basic logic circuitry is fully redun-
dant.

2. All errors are detected and the faulty
logic unit is disabled, thus correcting the er-
ror. Faulty logic units can be repaired without
interrupting system operaticn. If both A, and
A, fail et the same time, there is no error
detection; however, this situation is very un-
likely to occur.

3, The system is disabled only when
both logic units fail.

4. ‘The error detector is not in series with
the output signals; hence, its failure does not
affect the output.

5. Maintenance problems are simplified
since the faulty logic unit can be identified
automatically. Rapid identification of faults
permits rapid replacement of failed units.

T
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CHAPTER 11 MONTE CARLO SIMULATION

11-0 LIST OF SYMBOLS

Cdf = Cumulative distribution function
pdf = probability density function
denotes statistical definition

time for r failures

s.
t
Var{ }

Variance of
true failure rate for i

estimated failure rate for i, a ran-
dom variable

chi-square, a special random vari-
able

IS}
L}

11-1 INTRODUCTION

In formal terms, Monte Carlo <’ nulation
(often just called simulation) is a method of
mathematically simulating a physical experi-
ment to det:rmine some probabilistic proper-
ty of a population of events by the use of
random sampling applied to the components
of the events; see Refs. 1-4 for more informa-
tion. Less formally, simulation involves deter-
mining the probability distributions of the
components of the system, and selecting a
random sample from each compenent distri-
bution. The resultant component sample
values then are combined in a model to esti-
maiz the system reliability measure. This
process is repealed many times until enough
data have been obtained to estimate the sys-
tem probability distribution with the required
precision. The measure can be s-reliability or
mean time to failure, or it can be a perform-
ance parameter such as bandwidth, gain,
noise, or power output.

Simulation can be applied at various
phases of a program. For example, if actual
performance or failure data are available on
some of the components, the distribution of
these values can be determined. Then by ran-
dom sampling of these distributions and by
combining the sample values into a model de-
scribing the system in terms of its compo-
nents, the distribution of system performance
can be derived. These methods also can be
used as a prediction and analysis tool. For
example, during the system conceptual phase,

a system model can be developed in terms of
its components and, through use of various
assuimed component distributions, the per-
forraance of the system can be evaluated.
Simulation also can be used as a comparative
tool. Through simulation of various systems
and their component distributions, the differ-
ent types of systems can be compared, and an
optimum approach can be selected with a
high degree of assurance that, if the models
used to describe the system are realistic, the
selection truly will be optimum.

Simulation is based on several principles
of probability and on the techniques of prob-
ability transformations. One of the underlying
principles is the law of large numbers, which
states that the larger the sample, the more
certainly the sample mean will be a good esti-
mate of the population mean. The central-
limit theorem gives a more precise statement
of the law of large numbers (there are several
theorems under this heading, all relating to
the same topic--see Ref. 5 or Bibliography at
end of Chapter 1): If a population has a finite
variance 02 and mean g, then the distribution
of the sample (size n) mean approaches the
s-normal distribution with variance ¢* /n and
mean u as the sample size n increases.

An interesting thing about the central-
limit theorem is that nothing is implied about
the form of the population distribution func-
tion. Whatever the distribution function,
within reasonable limits, the sample mean will
have approximately the s-normal distribution
for large samples.

11-2 PROPERTIES OF DISTRIBUTIONS

Chapters 2 and 3 introduced the concept
of probability density functions (pdf) for con-
tinuous random variables, the probability
mass function (pmf) for discrete random vari-
ables, and the cumulative distribution func-
tion (Cdf) for any random variable. Text-
books, such as Ref. 5 and the Bibliography at
the end of Chapter 1, give an adequate intro-
duction to probability theory.

The s-expectaction of the average of N
s-independent trials of a function of g(x,) is

111

[P




Downloaded from http://www.everyspec.com

AMCP 706-197

the sexpectation of g(x), where X is a
random variable.

A generalization of the law of larze num-
bers comes into play during the repeated
Monte Carlo trials:

lim { P I'[.;(x)f(x)dx

N-+oco
N
1 (11-1)
- ,T,lex(x,)w € }} =0
where
€ = any positive number
flx) = pdfof x
8(x) = any function of x; usually, the
one being simulated
N = sample size
x; = sample value of X

Eq. 11-1 shows that the chance of depar-
ture from the true value of g(x), weighted
according to the frequencies of the x’s, be-
comes less as N increases.

The reasoning can be extended to a func-
tion of many variables.

11-3 THE SIMULATION METHOD

The simulation method is a way to deter-
mine the distribution of a function of one or
more variables from the distributions of the
individual variables. The method involves ran-
dom sampling from the distributions of all
variables and inserting the values so obtained
in the equation for the function of interest.
Suppose the function whose distribution is to
be estimated is g(x, , x,, . . ., X, ) and that the
X,, X,, ... X, are s-independent random
variables whose distributions are presumed to
be known. The procedure is to pick a set of
x’s randomly from the distributions of the
X’s, calculate g for that set, and store that
value of g. The procedure is repeated many
times until enough valués of g are obtained.
From this sample of g values, its distribution
and parumeters can be estimated. Very often,
one settles for estimating the mean and stan-
dard deviation of g.

Simulation is a well developed art/science.
It is virtually always done on a computer be-
cause a tremendous number of calculations

11.2

S RS

are involved. Special simulation lan:iages
have been developed. Check with your com-
puter installation fo find out what simulation
facilities are available, and what programming
assistance that installation can offer.

11-4 MEASURES OF UNCERTAINTY

Several methods are available for estab-
lishing s-confidence intervals and estimating
uncertainties in the results of a simulation.
They are essentially the same as in any sam-
pling technique. Chapter 4 reviews some of
the statistical concepts and gives references
for further resding. The procedures are all
quite standard and well-known (to mathema-
ticians).

The required sample size for a given mini-
mum uncertainty is a handy number to have.
It is useful for getting an idea of how much
computer time is likely to be involved. For
simulations of equipments, the programming
and anzlytic effort to get ready to simulate
will far outweigh the cost of actually running
toc simulations. Table 11-1 shows typical
sample sizes for various s-confidence levels
and geodness-of-fit (to the Cdf).

TABLE 111

MINIMUM SAMPLE SIZE REQUIRED
FOR MONTE CARLO SIMULATION®

5 1=090 y =095 =099
003 6800 9600 16500
0.02 1700 2400 4125
0.03 750 1066 1833
0.05 272 384 660

& = maximum deviation of sample Cdf from true Odf

v = sconfidence level

This table is derived from the Kolmogorov-Smirnov test of
goodness-of-fit. It does not depend on the form of the
distribution.

Since theory shows that the Monte Carlo
technique gives a true random sample of the
population (function) to be estimated, there
is no need to go into special discussions about
the statistical theory.
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All random distributions used for digital
computers are pseudo-random. Since a pat-
tern is used to generate the pseudo-random
numbers, modest attention ought to he
devoted to being assired that the numbers
will behave well enough for your particular
simulation. Rarely in reliability work will dif-
ficulties from this source arise, but it can hap-
pen.

11-5 APPLICATIONS

In principle, the demonstration of the reli-
ability of a system is a fairly straightforward
procedure. Take several systems, operate
them for a sufficient length of time, record
the number of failures which occur, and
evaluate the results by one of a number of
available statistical techniques. Unfortunately,
this is not practical — particularly for dealing
with complex, costly systems. Even an opti-
mum mix of time, available systems, man-
power, and test facilities is often economical-
ly prohibitive,

Because of the complexity of many sys-
tems, extensive tests at the system level often
are limited because of time, facilities, cost,
and schedules. Instead, extensive testing gen-
enally is done at the subsystem level. This per-
mits testing to be conducted earlier in a pro-
gram, and reveals potential difficulties at the
earliest possible time. Two management and

AMCP 708-187

statistical difficulties arise if the test realts
are to be used to aseess the reliability poten-
tial of the system. Such tests may be part of
the design-development program, and the reli-
ability data obtained may be a byproduct
rather than the end result of the test. There-
fore, there is no longer a controlled condition
in the statistical sense, and the analyst is
forced to work with the information that be-
comes available.

The synthesis of system reliability from
the results of subsystem tests is not a simple
problem. As a rule, each subsystem type will
be run a different number of total operating
hours, and different numbers of failures will
be observed.

To illustrate the second point, consider a
simple series (1-out-of-5:1') system consisting
of 3 s-Independent subsystems, with the oper-
ating times and observed failures indicated in
Table 11-2.

The subsystems have constent failure
rates. The failure rate of the system is just the
sum of the subsystem failure rates, and we
could try the same formula using the esti-
mated failure rates from Table 11-2, viz.

A, = (0.40 + 0.25 + 0.20) per 1000 hr =

0.85 per 1000 hr; A is an estimate of the faijl-
ure rate A. We have an estimate of \,; but, (as
mentioned in Chapter 4 ‘“‘Review of Statistical
Theory”') the trick is, not to get an estimate

TABLE 112

SUMMARY OF SUBSYSTEM OPERATING TIMES, FAILURES, FAILURE-RATE ESTIMATES
AND s-CONFIDENCE INTERVALS FOR FAILURE RATES

Test stopped
Total operating after r
Subsyatam time ¢, tw failures
1 5000 2
2 8000 2
3. 10000 2
System o -

~ s-Confidence
A=olt, interval for A,
per 1000 b lowsr 5% upper 5%
0.40 0.071 0.95
0.25 0.044 0.59
0.20 0.036 0.47
0.85 ? ?

A
A, is an estimate of the true failure rate A,

Tha s-confidence intervals were obtained from a table of the ehl-square distribution; 2 A, has a chi-square

distribution with 2r degrees of freedom. From tables such as those in Part Six, Mathematical Appendix_and
_Gmm for 4 degrees of freedom, the lower 5% point is x* = 0.711 and the upper 5% point is x° = 9.49,

\ bound = x3/(21).

11-3
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(anyone can do that), but to know its statis-
tical properties. Unfortuntely, the statistical
properties of the estimate we just used are not
knovwm. The statistical properties of estimates
of system reliability from a knowledge of sub-
systein sample data is an unsolved probk n
(except for a few special cases).

For each subsystem, it is known that 2A ¢
has a chi-square distribution with -y degrees of
freedom; ¥ = 2r if the test is stopped after r
failures, and v = 2(r + 1) if the test is stopped
after a fixed time ¢; A is the true failure rate.

We will solve our particular problem by

Monte Carlo simulation. The equation for A,
whose distribution we want to estimate is

”

A, = A +3, +1, (11-2)

In each subsystem, the procedure is to run
until 2 failures occur. We cannot simulate un-
less we know the distributions from which the

A; come. So we cannot solve the problem in
Table 11-2 by a short simulation; we can,
however, solve a similar one, as given in Table
11-3. We have to know all the parameters in a
problem in order to solve it by Monte Carlo
simulation. It is neither correct nor meaning-
ful to use the random times in Table 11-2 to
find a “distribution for A’; in classical statis-
tics, A does not have a distribution, it is fixed.
See Ref. 7 for an advanced discussion of
s-confidence.

One of the big difficulties with Monte
Carlo simulation is that it is so restricted. Like
other numerical techniques, it does not an-
swer general questions; it only treats the
specific numbers used in it.

Let x} be a random value from a chi-
square distribution with 4 degrees of freedom.

TABLE 11.3
SYSTEM FAILURE BEHAVIOR

Test stopped
True failure rate A, after r failures,
Subsystem per 1000 hr r
1 0.80 2
2 0.50 2
3 0.10 2
System 1.40

Then, for this example

’ii =nly = 2/!‘:
(defines A;) (11-3)

2\ =03, = X3
(2At hasa x2, distribution) (11-4)

N = e (11-5)

Eq. 11-5 is used to calculate A; from 2 ran-
domly generated value of chi-square (with 4
degrees of freedom). Table 11-4 is a collection
of pseudo-random numbers from the chi-

TABLE 114
RANDOM NUMBERS FROM
THE CHISQUARE
DISTRIBUTION WITH 4 DEGREES
OF FREEDOM
No. 1 No. 2 No.3
11.73 4.959 6.134
0.6107 3.858 4721
2628 1.56€ 7.891
6.040 6.393 3.485
2.106 2.590 1.867
4.994 4.870 3.040
2135 14.47 4.920
2977 3.897 4.376
3.172 7.499 1.331
9.594 1.331 2.262
5.751 3.487 3.083
0.1846 0.5026 2.660
9.423 6.447 2.254
4.967 0.3100 2194
6.093 3.182 5.509
5.074 7.010 5.559
4.347 9.706 1.177
1.094 1.498 3.107
3.696 8.131 4.455
0.3131 7.743 2.267
0.4130 4.379 4.907
3.559 7.291 1.333
2.523 1.31 6.511
6.946 10.32 4.688
1.57 3.098 0.9772
181 1.456 3.709
13.02 2.405 5.368
7.036 9.338 4619
2.787 1.767 7.469
6.049 3.203 2,261




Downloaded from http://www.everyspec.com

Y - . o]
AMCP 708197
;.} TABLE 116
MONTE CARLO ANALYSIS OF EXAMPLE SYSTEM
Subeystom "\o 1 Subsystem P‘d\o 2 Subsystem I!o 3 Systm:~
A n kl n. XL n X; n - Xj
1
3 0.273 12 1.403 4 0.063 1 0.739
27 5.240 16 1.518 10 0.085 26 5.843
2 1.218 24 1.277 1 0.051 22 2.548
10 0.530 11 0.312 16 0.115 5 0.957
24 1.519 21 0.772 26 0.214 2 2.506
13 0.641 13 o3 19 0.132 8 1.183
23 1.499 1 0.138 8 0.081 18 1.718
19 1.075 15 0.513 14 0.091 17 1.680
18 1.009 7 0.267 28 0.301 15 1.576
4 0.334 27 1.503 22 0.177 19 2.013
1 0.556 17 0.574 18 0.130 1" 1.260
0 17.335 29 3.4979 20 0.150 30 21.464
5 0.340 10 0.310 23 0.177 4 0.827
14 0.644 30 6.451 25 0.182 27 7.278
8 0.525% 19 0.629 6 0.073 10 1.226
12 0.631 9 0.285 5 0.072 6 0.988
15 0.736 3 0.206 29 0.340 12 1.282
26 2.925 25 1.335 17 0.129 25 4.389
i 16 0.866 s 0.246 13 0.090 9 1.202
o 29 10.219 6 0.258 21 0.176 29 10.654
28 7.748 14 0.457 9 0.082 28 8.286
i 17 0.893 8 0.274 27 0.300 14 1.474
22 1.268 28 1.526 3 0.061 23 2.856
i 7 0.461 2 0.194 1 0.085 2 0.740
25 2.732 20 0.646 30 0.409 24 3.787
1 0.1 26 1.374 15 0.108 16 1.653
2 0.246 22 0.832 7 0.075 7 1.152
6 0.455 4 0.214 12 0.087 3 0.756
20 1.148 23 1.132 2 0.054 20 2.333
9 0.529 18 0.624 24 0.177 12 1.330
sample -
mean x 2.126 0.922 0.142 3.190
sample
standard s 3.664 1.282 0.091 4.2
deviation
]
3 slx 1.72 1.39 0.64 1.32
3 n is the order number in the sample.
1]

5 11-5
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FIGURE 11-1. Sample CDF's for the Example (s-Normal distribution paper)
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square distribution with 4 degrees of freedom,
as required in Eq. 11-5. They are pseudo-
random because they exist beforehand (for
us) on a sheet of paper. Since the numbers are
pseudo-random, a choice must be made on
how to use them. Arbitrarily pick column i

fork, i= 1,2, 3; and begin at the top and go
down in sequence. We will hope that the
method of generating these numbers did not

have a “cycle” such that the rows contain

highly correlated numbers.
Table 11-5 contains the calculations for
A A A

the A; and for A,; A, is derived from Eq. 11-2.

s? g
The estimate of A; in Table 11-5 occupies the
same relative position that the random num-
ber does in Table 11-4. Column 4 in Table
11-5 contains the estimates of the system fail-
ure rate. At the bottom of each column, there
is the sample mesn x, sample standard devia-
tion s, and the ratio s/x.

As to be expected, the mean of '5\, is the
A
sum of the means of the A;. But the variance
A
of A, is more than the sum of the variances of

the '7\\,. This means that there was some cor-
relation along the rows. A statistical test
showed that the ratio 17.82/15.08 = 1.18 of

the Var {A, } /(Var (\,}+ Var (A,} + Var

{A; }) would be exceeded by chance about
25% of the time; probably not too bad.

The sample Cdf’s wre plotted (smoothed
suinewhat) in Fig. 11-1, on s-normal distribu-
tion paper (an s-normal Cdf would appear as a
straight line), Needless to say, none of the
distributions are s-normal. The pdf’s are all
skewed to the right; there are some very large
sample values. The coefficient of variation
(s/x) is more than 1, which also shows the
skewness of the distribtiions.

P s
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The curves for 3., would all be the same
{except for scale) if very large samples were
used.

The tests were all terminated at the
second failure. Obviously, there is a great deal
of scatter in the test results.

This Monte Carlo trial, by hand, has
shown the shape of the central portion (say,
5% to 95%) of the distributions. More trials
would extend that range. The example was set
up to use only one probability distribution
for the trials; this was for convenience in
doing hand calculations. In practice the distri-
butions need not be the same for il clements.

REFERENCES

1. A. H. Cronshagen, Application of Monte

Carlo Techniques in Reliability Evalu-

ation, Aerojet-General Corp., Azusa,

Calif., 5 June 1962.

C. W. Churchman, R. L, Ackoff, and E. L.

Arnoff, Introduction to Operations

Research, John Wiley and Sons, Inc.,

N.Y., p. 75.

3. DA Pam 70-5, Mathematics of Military
Action, Operations and Systems.

4. M. L. Shooman, Probabilistic Reliability,
McGraw-Hill Book Company, Inc., N.Y,,
1968.

5. E. Parzen, Modern Probability Theory and
Its Applications, Jokn Wiley & Sons, Inc.,
N.Y,, 1960.

6. Mathematical Simulation for Reliabiiity
Predictions, RADC Report, Sylvania Elec-
tric Products, Waltham, Mass., October
1961.

7. M. G. Kendall and A. Stuart, The Ad-
vanced Theory of Statistics, Vol, II Statis-
tical Inference and Statistical Relation-
ships, Hafner, 3rd ed., 1971,

M

11.7




abA =
f(x) =
gla) =

£{x) =

Downloaded from http://www.everyspec.com

AMCP 708197

CHAPTER 12 RELIABILITY OPTIMIZATION

120 LIST OF SYMBOLS

matrices in par. 12-2.2

some function of x

see Eq. 12-3

inequality-type constraint func-
tion

h,(x) = equaiity-tvpe constraint function
r = number of constraints
R,R, = constraint sets
s- = denotes statistical definition
s = gradient of f(x), subscript i means
value at iteration i
x,X; = vector with several components,
value at iteration i

x* = x for global minimum of f
X;Xq = individual dimensions (compo-
nents of x)
X, = some particular x; the starting
point of x for an iterative solution
for f(x)

a,x; = scalar parameter, for iteration i
€ = some positive number (usually
small)
AA; = scalar parameter between 0 and 1
$0+91¥ = gpecial functions (par. 12-3.6)
¥T = implies transpose of ¥ ; X is any
vector or matrix
V = gradient operator

12-1 INTRODUCTION

Seldom is it feasible to optimize a reliabil-
ity function of a complicated system without
using a computer, Thus, most of this chapter
is written with computers in mind. Comput-
er-aided design techniques offer the engineer
relief from complicated calculations. Optimi-
zation programs can apply prespecified con-
straints and determine the most desirable
component values. To accomplish these tasks,
the computer must be provided with a
method for generating alternate values for the
design variables and some measure for com-
paring Jhe resulting designs. This measure is
usually a single function such as reliability,
and the design goal is to optimize its value. A
design which does this is called optimal. Meth-
ods for generating alternate solutions that
account for constraints and that converge to
an optimal solution generally are called math-

ematical programming techniques.

Mathematical programming techniques
optimize a given objective function f(x) by
proper choice of a vector of design variables
x. If x is restricted to certain allowable values,
then the problem is constrained; if not, the
problem is unconstrained.

The branch of mathematical programming
that deals with linear constraints and linear
objective functions is called linear program-
ming. Since it is widely used and well de-
scribed elsewhere (Refs. 1 and 2), linear pro-
gramming will not be discuseed here. Instead,
nonlinear programming problems, i.e., those
which have at least one nonlinear constraint
or a nonlinear objective function, or both,
will be discussed. Multistage problems which
fall under the heading of dyramic program-
ming will also be ronsidered.

In engineering prcblems, the designer of-
ten wants o maximize or minimize a function
of n variables, f(x), in a situation where the
design constraints do not restrict the values of
the variables x. Many problems in which the
constraints are binding can be converted to
unconstrained problems or sequences of such
problems. Since the problem of maximizing
f(x) is equivalent to that of minimizing
—f(x), we need consider only the minimiza-
tion problem.

A point x* is said to be a global minimum
of f(x) if, for all values of x,

f(x*) < f(x) . (12-1)
If the strict inequality holds, the minimum is
said to be unique. If Eq. 12-1 holds only for
all x in some neighborhood of x*, then x* is
said to be a local minimum of f(x), since in
this case x* is the best point in the immediate
vicinity but not necessarily the best point in
the whole region of interest.

If f(x) is continuous and has continuous
first and second partial derivatives for all x,
the first necessary condition for a relutive
minimum at x* is that all the partial deriva-
tives of f(x) be zero, when evaluated at x*
(Ref. 3).

af(x)

= (Q,foralli
ax,

x*

(12:2)
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The second necessary condition is that the
matrix of second partial derivatives evaluated
at x* be positive semidefinite. Any point x*
that satisfies Eq. 12-2 is called a stationary
point of f{x}. Sufficient conditions for a rela-
tive minimum are thet the matrix of second
partial derivatives of f(x) be poative definite
and that Eq. 12-2 must hoid.

12-2 NUMERICAL METHQDS FCR FIND-
ING UNCONSTRAINED MINIMA

The most obvious approach to finding the
minimum of f(x) is to solve Eq. 12-2. U f(x) is
not quadratic, Eq. 12-2—the set of n equa-
tions in n unknowns—is nonlinear, and solving
large sets of nonlinear equations is usually a
very difficult task. The function f(x) may be
so complicated that it is difficult even to
write Eq. 12-2 in closed form. Further, even if
the equations could be solved, there would be
no guarantee that a given solution represented
an actual minimum rther than some saddle
point or maximum. We will, therefore, consid-
er other methads of locating uncorstrained

12-2.1 GRADIENT METHODS

If f(x) is continuous and differentiable, a
number of minimization techniques using the
gradient of f(x) are available. The gradient
Vf(x) is a vector pointing in the direction of
greatest increase of f(x). At any point x4, the
vector f(x) is nommal to the contour of con-
stant function value which passes through x,.
Two methods are presented.

12-2,1.1 Steepest Descent

The method of steepest descent for mini-
mizing f(x) is detailed in Table 12-1. In Step
2, the gradient can be found either by analyt-
ic formulas or by computing differences. Step
3 uses the direction of search determined in
Step 2 and decides how far to move in this
direction. The computer spends most of its
time computing the gradient in this method,
so the step length, «, for Step i is selected to
gel the largest possible decrease in f(x) for
each gradient computation. Therefore, «a; is
selected to minimize the function

8la) = f(x; + as;) . (12-3)
12-2

Define also,
s, =-Vf£(x,}, {12-4

the gradient of f. Both x; and s; are known
vectors; a is the only unknown variable in Eq.
12-3.

The method of steepest descent converges
to at least a local minimum of f(x), providing
certsin mikd restrictions are met (Ref. 5). The
computations in Steps 2, 3, and 4 of the
steenest descent method are repeated until a
satisfactory value for x is found.

Several tests for determining when the
computation should be stopped are also listed
in Table 12-1. Stop Criteria 1 and 2 are based
on the fact that the gradient vanishes at a
minimum. When Criteria 3 and 4 are used, the
computation will stop if the function value or
current point changes by less than some small
value ¢. It has been found that Criterion 3 is
the most dependable, providing it is met for
several successive values of i. In all criteria, ¢
is a small positive number which the user se-
lects. As e decreases, the location of the mini-
mumn is more accurate, but more iterations are
required to achieve this accuracy.

12-2.1.2 Cubic and Quadratic Interpolation

Finding a value a* to minimize Eq. 12-3
can be thought of as a problem of 1-dimen-
sional minimization in the direction of s;, The
cubic interpolation procedure outlined in
Table 12-1 solves this problem for any given
direction of s; in which the function f(x) ini-
tially decreases.

For the cubic interpolation procedure and
the quariratic interpolation which follows, the
components of x are scaled so that a unit
change in any variable is an important (but
not too large) fractional change in that vari-
able. For example, if a capacitor is expected
to have a value near 100uF, then a 1uF
change would be important, bul a 10uF
change would be too large,

Steps 1 and 2 of the cubic interpolation
procedure normalize s so that its cornponents
are less than or equal to 1 in magnitude. This,
along with scaling, insures that s is a reason-
able change in x. Step 3 moves along the di-
rection s to place the desired minimum valne
a¥ in the interval a < a* < b. Steps 4 through

-
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OPTIMIZING UNCONSTRAINED PROBLEMS

athod of Swepest Descsnit

1. Start the compulation at
some initial point X, uwally the
best available estimate of the mini-
reum. The ith iteration (i = 0,1, 2,
«) proceeds as follows.

2. Compute the gradient
VAx;) and let the current ¢ <»ction
of search be 5; = —V f(x,).

3. Compute a step length a; by
choosing a; to minimize /(x; + as,).
Cubic and quadratic interpolaticn
piocedures are detailed below.

4. Compute a successor vector
for x;:

X1 =X tag,

5. Check a stop criterion (see

below). If it is satisfied, stop.

Otherwise, return to step 2 and re-
placeibyi+1.

Pomible Stop Criteria for Terminat-
ing Computation

of
1. Max, ax, <e€

)2
2.:;(3}7) < €

3. f(E[)—f(;j+1)< €
Cubic Interpolation

1. Calculate A, the maximum
value of |s;].

2. Divide each component of
the vector 5 by A.

3. Compute g(x) and £'(x) =5’
Vix+as)fora=0,1,24,..aq,
b, where b is the first of these val-
ues at which either g’ is nonnegative
or g has not decreased. If 2(1) >>
£(0), divide the components of 5 by
some factor (2 or 3) and repeat this
step,

4. Compute
2-3 £OZ20)

L

5. Compute
w={z* — (e} (b)]%
6. Ccmpute
£o)+w—z
0T T —d@+w ©79

1. If ga,) < gla) and g(a,) <
£(D), accept a, as the desired mini-
mum value a*.

8. If g(a,) > g(a) or £'(a,) >
0, repeat steps 4 through 6 using b
=a,.

9. Otherwise, repeat steps 4
through 6 usinga - a,.

Quadratic Interpolation

1. Calculate A, the maximumn
value of [5;s.

2. Divide each component of
the vectors by A.

3. Ifg(1) > g(0), compute g(a)
for a = 44, ... until g(a) < g(0).
Seta=0,b=a, and c = 2x and o
to step 5.

4. Compute g(a) fora=0,1,
2,4,8, ..,4, b,c. Stop the compu-
tation at @ = ¢ when the present
value of g(a) is greater than the last
computed value,

5. Compute
a, =

o {ORF (0]

“lg(a)(c? - b?) +g(b)(a% —c?)

+g(c)(b? —a?)]
+ [g(a)(c — b) + g(b)a —c)
+8(c)(b —a)]

6. If g(x,) <g(d), accept a, a8
the desired minimum value o*;
otherwise accept b as the desired
value a*.

The Fletcher-Powsil Method
1. Start with a positive defin-

ite matrix H, (ususlly chosen as
the identity matzix) and aa iaitial
point x,,. The ith step,i =0, 1, ...
proceeds as follows,

Z. Compute tie gradient,
v 1G).

3. Compute the direction:

§=—H; V&)

4. Choose a step length a; to
minimize gla) = /%, + aF)). See
cubic or quadratic interpolation
proceJure above,

5. Compute 3, ~ as;

6. Compute a new value X, ,
from the relationship

X =Xty
7. Compute
Y=V 1(x,1) - VIE)
8. Compute the matrix

i —p—

G
9. Compute the matrix
—Hyy'H,

B, - __,y'___,y,_ :

Y Hy,

10. Compute the successor ma-
trix

11. Check the stop criterion. If
it is satisfied, stop. Otherwise, re-
tum to step 2, using the succvssor
matrix'as the new H,, and replace i
byi+1,

The Conjugate Gradient Method

1. Start with an initial vector
of variables X, and an initil direc-
tion 55 = — V f(X,). The ith step (i
=0, 1,2,...) proceeds as follows.

2. Choose a step length o to
minimize

&) = f(x; +az;)
See cubic or quadratic interpolation
procedure above,

(R -
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TABLE 12-1 (cont’d)

OPT'MKZING UNCONSTRAINED PROBLEMS

warisbies,
Xy =X g
4. Computer(f,ﬂ).
§. Compute _
vr (&141) VAZ )

Ve VIG)
€. Compute a successor direc-
tion,
$141 =~V /(x41) B8
7. Check a stop criterion. If %
is satisfied, stop. Otherwise, reti:n

3. Compute a new vector of Powsil’s Method

1. Porr=1,2,..,n, caculate
a, s that f(x,, + as,) is a mini-
mum (see cubic or quadratic inter-
polstion procedure) and define

;r-;r-l +ar;r
2, Find the-integer m, 1 <m

<n, 50 that [/(%,,.;) —/(%,)] ia
maximum, and define

A= (xp1) —1(x,0)

3. Calculate fy = f(2%, — %,)
zzd dofine £, = j(X,) and f, =

4 Ufs2fiocif(fy —2,+
f;)' (f; "‘fg - A)z >K%A. (fl -
f3)2, ot both, use the old directions
85189, - 5, for the next iteration
and use X, a8 the next x,.

5. I neither condition in step
4 holds, dofine 5 = (x, —X,), and
calculste a 30 that f(x, + as)isa
minimum (see cubic or quadratic
interpolstion procedure). _

6. Use 3y, 52, vy Sm 429 Smeb1r
«s § 88 the directions for the next
iteration and X, = zs for the next
e

. ibyitl
tostep 2and replaceibyi+1 1&.).

6 fit a cubic polynomial to the computed
values &la)r g('cp ns: and g;,, . This polyno-
mial has a unique minimum located at a, in
the interval between a and b. In Step 7, a, ic
taken as the desired value of a* if a, is a
better choice than either a or b. If not, the
interpolation is repeated over a smaller inter-
val in Steps 8 and 9.

If derivatives are not available or are diffi-
cult to compute, the quadratic interpolation
procedure can be used for 1-dimensional mini-
mization, Step 5 of this procedure fits a quad-
ratic polynomial to the three values g,,,, &, »
and g,.,. The minimum of this polynomial is
located at a, .

The most that can be guaranteed by the
steepest descent method, or any other itera-
tive minimization technique, is that it will
find a local minimum, usually the one “near-
est” to the starting point x,. To attempt to
find all local minima (and thus the global min-
imum), the usua) approach is to repeat the
minimization from many different initial
points.

12-2.1.3 Numerical Difficulties

Since successive steps of the method of
steepest descent are orthogonal, some func-
tions converge very slowly. If the function

124

contours are circles (or, in the n-dimensional
case, hyperspheres), the method finds the
minimvm in one step. However, for other
contours, the gradient direction is generally
quite different from the direction to the rini-
mum, and the method produces the ineffi-
cient zig-zag behavior shown in Fig. 12-1.
Since many, if not most, of the functions
occurring in practical applications have eccen-
tric or nonspherical contours, we often must
tum to more efficient methods than steepest
descent.

12-2.2 SECOND-ORDER GRADIENT
METHODS

A number of minimization techniques
have been developed to overcome the difficul-
ties of the method of steepest descent. The
general notion behind these techniques is that
methods which quickly and efficiently mini-
mize a general function must fulfill two crite-
ria. They must work well on a quadratic func-
tion, and they must be guaranteed to con-
verge (eventually) for any general function.
These criteria are based on the observation
that, since the first partial derivatives of a
function vanish at the minimum, a Taylor
series expansion about the minimum x* yields
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The parabolas are equivalue contours of the ob-
jective function y = 16xi + (x; - 4)>. The heavy
zig-zag line shows the path taken by a steepest
descent procedure seeking the minimum value of
this function.

FIGURE 12-1. Finding the Minimum Using the
Steepest Descent Method*

f(x) = f(3*) + Ye(x - x*)T H/ (x*)(x - x*),
(12-5)

where

T indicates the transpose of a matrix
and

H,(x*) = matrix of second partials cf f
evaluated at x*.
H, is assumed to be positive definite; thus, the
function behaves like a pure quadratic in the
vicinity of x*.

12-2,2.1 Conjugate Directions

Most, if not all, of the newer, more effi-
cient unconstrained minimization procedures
are based on the idea of conjugate directions
(Refs. 6-R).

ANC? 708197

The general (positive definite) quadratic
function can be written as
q(x) =3+ bTx + xT Ax (12-6)
where the matrix A is positive definite and
symmetric. The procedure for finding the
minimum value g(x*) consists of starting at
some initial point x, and taking sucvessive
stepe along the directions 8, 8, , +., $,.; . All
these directions are chosen to be A-conjugate;
ie,forall i#j,i,j=0,1, ceo,n—1, these

directions satisfy the relationship
s7As; =0 . (12-7)
Successive points in the minimization proce-
dure are computed from
X1 =X +as;. (12-8)

As in the steepest descent method, the value
of the siep size a; is found by minimizing
f(x; + as)).

It can be shown that, regardless of the
starting point, this sequential process leads to
the desired minimum value of g(x¥*) in n steps
or less (where n is the number of variables in
the vector x) (Ref. 8). Thus, conjugate direc-
tions minimize a quadratic very efficienily.

12-2.2.2 The Fletcher-Powell Methcd

The method presented by Fletcher and
Powell (outlined in 'T'able 12-1) is probably
the most powerful general procedure now
known for finding a local minimum of a gen-
eral function f(x) (Refs. 8 and 9).

Central to the method is a symmetric,
positive definite matrix H;, which is updated
at each iteration, and which supplies the cur-
rent direction of motion s; when multiplied
by the gradient vector. The numerators A,
and B, in Steps 8 and 9 of the Fletcher-Powell
method are both matrices, while the denomi-
nators are scalars. Fletche: and Powell have
demonstrated that their method will always
converge, since the objective function f is ini-
tially decreasing along the direction s;. When
the method is applied to a quadratic (Eq.
12-5), the directions s; are A-conjugate, and
the process converges to a minimum in n
steps. The matrix i, converges to the inverse
matrix A'! after n steps. When applied to a
general function, H; tends to become the

12-5
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inverse of the matrix of second partial deriva-
tives of f(x) evaluated at the optimum.

Numerical tests bear out the rapid conver-
gence of this method. Consider, for example,
the function

f(x, %y ) = 100(x, — x3)2 + (1 —x, )

(12-9)
This is called the Rosenbrock function (Ref.
10). Its contours are shown in Fig. 12-2. The
minimum is at (1,1), and the steep curving
valley along x, =x2 makes minimization dif-
ficult. The paths taken by the optimum gradi-
ent technique and by the Fletcher-Powell
method sre also in Fig. 12-2, Notice that the
Fletcher-Powel! technique follows the curved
valley and minimizes very efficiently.

Another conjugate direction minimization
technique is the conjugate gradient method,
outlined in Table 12-1. It requires computa-
tion of the gradient of f(x) ~nd storage of
only one additional vector, the actual direc-
tion of search (Ref. 9). This method is not
quite as efficient as the Fletcher-Powell tech-
nique but requires much less storage, a signifi-
cant advantage when the number of variables
n is jarge (Ref. 9).

There are a number of minimization tech-
niques that do not require derivatives.
Powell’s method seems to be the most effi-
cient of these (Refs. 8 and 9). In this method,
outlined in Table 12-1, each iteration requires
n 1-dimensional minimizations down n linear-
ly independent directions, s, ,s,,++,s,. Asa
result of these minimizations a new direction
s is defined. If a specified test is passed, s
replaces one of the original directions. The
process usually is started from the best esti-
mate of the minimizing x using the initial s;’s
as the reference coordinate directions.

12-3 CONSTRAINED OPTIMIZATION
PROBLEMS

In constrained minimization problems,
the variables X may take on only certain al-
lowable values. In Fig. 12-3, for instance, the
unshaded area is the set of allowable values of
variables x, and x,, called the constraint set.
This is the set of all points satisfying the
inequalities x, >0, x, 2 0, £,(x)> 0, and
8,(x)=2 0.

12-6

A general programming problem may have
equality constraints as well as inequality con-
straints. Equalities often describe the opera-
tion of a system, while inequalilies define
limits within which certain physical variables
must lie. Thus the general problem of con-
strained minimization can be posed as one of
minimizing the objective function f(x) subject
to inequality and equality constraints:

gi(x) <0 i=1,2, .-, }(12-10)
hi(x)=0 j=112r°"7r
When the functions f, g, and h; are all linear,
the problem is one of linear programming; if
any of the functions are nonlinear, the pro-
gramming problem is nonlinear.

Constrained optimization problems are
generally more difficult to solve than those
without constraints. However, it is sometimes
possible to eliminate inequality constraints by
appropriate transformations. A number of
transformations, as well as sequences of trans-
formation, have been found useful (Ref, 10).

12-3,1 NONLINEAR CONSTRAINTS

A specific nonlinear programming prob-
lem is shown in Fig. 12-4. The constraints are
all linear inequalities (x, >0, x, >0,
5~x;,—x,20, —25+x,-x,<0)
which form a constraint set with four corners.
The nonlinear objective function, represented
by a set of concentric circles, is

f(x) = (x; — 3)® + (x, — 4)2. (12-11)
The minimum value of f(x) correspends to
the contour of lowest value having at least
one point in common with the constraint set.
This is the contour labeled f(x) = 2 , and the
desired solution is at its point of tangency
with the constraint set (x¥ =2, x§ = 3);
this is not a corner point of the set, although
it is a boundary point (for linear programs,
the minimum is always at a corner point). Fig.
12-5 shows what happens to the problem
when the objective function is changed to
f(x) = (x; — 2® + (x, — 2).
(12-1%)
The minimum is now at x¥ =2, x¥ =2,
which is not even a boundary point of the
constraint set. Therefore, this problem could

have been solved as an unconstrained minimi-
zation of f(x).

("
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m 5 f = 0
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4 af
Optimum gradient
Fletcher-Powell
1 1 1 i
—
‘15 ‘1.0 10 15 X,
The Fletcher-Powell procedure found the minimum in
17 computational iterations. The optimum gradient
technique required 67 iterations.
FIGURE 12-2. Comparison of Fle*cher-Powell and Optimum Gradient
Technigues for Minimizing a Difficult Function®
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Xa

gi1{x)=o0

g; (X) =0

Allowable values for the variables in a problem may
be limited or constrained. The area within four

boundary curves is called the constraint set.

FIGURE 12-3. Constraint Set

fix)=0  f(x) =087

\o-—1(X) =4

AN

«

1

NGCANNANNRANNN

Values of the nonlinear objective function, which is
to be minimized, are shown as concentric circles.
The constrained minimum is one of these lines.

FIGURE 12-4. Nonlinear Programming Problem
With Constrained Minimum®

12-8

flx]=0

fixl =10
f(x) =40

25+x, -x,
=0

Xy

When the minimum value of the objective function is
inside the constraint set, the constraint does not af-
fect the solution. Here the point f(x) = 0 is the de-
sired minimum value.

FIGURE 12-5. Nonlinear Programming Probiem
With Objective Function Inside the Constraint Set*

As an example of a nonlinezr problem in
which local optima occur, consider an objec-
tive function with two minima, both of which
fall within the constraint set so that there are
two local miaima. Contours of such a func-
tion are like those shown in Fig, 12-6.

The chief nonlinearity in a programming
problem often appears in the constraints rath-
er than in the objective function. The con-
straint set will then have curved boundaries. A
problem with noniinear constraints can very
easily have local optima, even if the objective
function has only one unconstrained mini-
mum. This is demonstrated in Fig. 12-7,
where there is 2 nonlinear objective function
with a nonlinear constraint set that gives local
optima &t the two points a and b. No point of
the constraint set in the immediate vicinity of
either point yields a smaller value of f(x).

- - - =
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From these examples we can see that the
optimum of a nonlinear programming prob-
lem will not necessarily be at a comer point
of the constraint set and may not evea be on
the boundary. In addition, there may be local
optima distinct from the global optimum.
These properties are direct consequences of
the nonlinearity. However, a class of nonlin-
ear probl>ms can be defined which are guaran-
teed to be ree of distinct local optima. These
are called convex programming problems.
Before some of the specific methods of solv-
ing constrained minimization problems are
described, the concept of convexity and its
implications for nonlinear programming will
be discussed.

12-3.2 CONVEXITY

There are several reasons why the con-
cepts of convexity and convex functions
(which will be defined in this paragraph) are
important in nonlinear programming. It is
usually impossible to prove that a given proce-
dure will find the global minimum of a non-
linear programming problem unless the prob-

There may be more than one minimum point within
the constraint set. Here, f{x) = 4 and f(x) = 3 are
both constrained minima, but f(x) = 4 is only local.

FIGURE 12-6. Local Minimum®

ANCP 706-197

Hx) =15
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Here the constraint set has curved boundaries which
cause the focal minimum f{x) to be 40; the global
minimum f{x} in this case is 15.

FIGURE 12-7. Local Minima Due to Curved
Constraints*

lem is convex. Even though there are many
real-world problems that are not convex, re-
sults obtained under convexity assumptions
often can give insight into the properties of
more general problems. Sometimes, such re-
sults even can be carried over to problems
that are not convex, but in a weaker form. In
fact, few important mathematical results have
been derived in the programming field with-
out assuming convexity.

Convexity thus plays a role I mathemati-
cal programming which is similar to the role
of linearity in the study of dynamic systems,
where many results derived from linear theory
are used in the design of nonlinear control
systems.

The main theorem of convex program-
ming is that any local minimum of a convex
programming problem is a global minimum. If
the protlem has a number of points at which
the global minimum exists, the set of all such
points is convex, and no distinct, separate,
focal minima with different functional values
can exist. This is a very convenient property
since it greatly simplifies the task of locating
the global minimum.

A set of points is convex if the line seg-
ment joining any two of these points remains
in the set. In Fig. 12-8, sets A and B are con-
vex, while C is not. A convex set can be

129
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7
5
Line §
Segment !
not in set E
{
¢
:
Convex et Convex set Non-convex sat {«
A linear constraint set is always convex. 5
FIGURE 12:8. Convex and Nonconvex Sets* 5
5
thought of as one whose walls do not bulge the line joining x, and x,. This can easily be 3
inwards. The constraint set of a linear pro- verified in two or three dimensions. ;
gramming problem is always convex. A function f(x) is convex if the line seg- 2
In the multidimensional case, these geo-  ment drawn between any two points on the i
metrical ideas must be formulated in algebraic graph of the function never lies below the i
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terms. In particular, the line segment between

two points must be defined. If the two points

are x, and x,, the segment between them is

the set

S={xix=ax, + (1 —2)x,,0<A<1}.

(12-13)

IfA=0,x=x,;if A =1, x = X,; as A varies

between these extreme values, x moves along

Aix, )+ 3-Axy )
(Ax, +{1-A)x,)
fix,)

b Ax, +(1-A)x,

)
i
f—

Xy L

Convex function

graph. If the line segment never lies above the
graph, the function is concave. Examples of
concave and convex functions are shown in
Fig. 12-9. The left function is strictly convex,
since the line segment is always above the
function; the right function is strictly con-
cave. A linear function is both convex and
concave, but neither strictly convex nor strict-
ly concave.

Concave function

A linear function is both convex and concave.

FIGURE 12-9. Concave and Convex Functions*

12-10
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Algebraically, & function f(x) is convex if
fAx, + (1 —A)xy) < Af(x,) + (1 — A)f(x,)
(12-14)

for all x, , x, in the (convex) domain of defi-
nition of f. The function is strictly convex if
the strict inequality holds.

A convex programming problem is one of
minimizing a convex function over a convex
constraint set. As we mentioned eardier, the
main theorem regarding such programs is that
any local minimum of a convex programming
problem is a global minimum. Furthermore, if
there are a number of points at which the
global minimum is attained, the set of all such
points is convex. Thus, there can be no sepa-
rated local minima with different functional
values. Since most procedures can locate only
local minima, these properties are very advan-
tageous. The theorems of convexity (Refs. 11
and 12) listed in Table 12-2 allow this to be
done in some cases.

As a consequence of convexity theorems
1 and 2, the pioblem of minimizing a convex
function f(x), subject to r constraints g,(x) >
by, i=1,-..,r with all g, convex, is always a
convex programming problem. This is true be-
cause, from theorem 1, each of the sets

R, = (Xig,(x)> b}  (12-15)

is convex. The constraint set R, which is the
intersection of all the sets R, is also convex by
convexity theorem 2.

Since all linear functions are convex, a lin-
ear programming problem is always a convex
programming problem. This establishes more
firtaly the geometrically evident fact that a
linear program cannot have local optima dis-
tinct from the global optimum.

Since convex programs can be identified
by determining whether the objective and
constraint functions of the problem are con-
vex, it is important to characterize convex
functions closely. This can be done by using
convexity theorems 3 through 6. Statement b
in theorem 3 says that the function, evaluated
at any point x,, never lies below its tangent
plane passed through any other point x,.
Thneorem 4 is a direct consequence of state-
ment ¢ in theorem 3.

Since f(x + as) is the function evaluated
at points along the line s passing through the

AMCP 706-197

point x, theorem 6 implies that a convex
function is convex along any line. This allows
us to test to see whether a given function of n
variables is nci convex, for if any line in
n-dimensional space can be found along which
&(x) is not convex, then f(x) is not convex
either.

12-3.3 MIXED PROBLEMS

Many problems involve both equality and
inequality constraints. In such problems, it
has been found that the linear function
&(x) = aT x is the only function for which the
set

R = {x|g(x) = 0} (22-1%
is convex.

Nonlinear functions in two dimensions
have graphs that are curved surfaces. If x; and
X, are on the graph and are, therefore, in the
constraint set R, then points on the line seg-
ment joining x, and x, will, in general, not lie
on the graph {will not be in R). A hyperplane,
being “flat”, is an obvious exception.

Consider the problem of minimizing f(x)
subject to the constraints g,(x)> 0,i=1,.+.r
and hy(x)=0,j=1,-+.5s. From the preceding
statements, this may not be a convex pro-
gramming problem if any of the functions
hy(x) are nonlinear. This, of course, does not
preclude efficient solution of such problems,
but it does make it more difficult to guaran-
tee the absence of local optima.

In many cases, the equality constraints
can be used to eliminate some of the vari-
ables, leaving a problem with only inequality
constraints and fewer variables. Even if the
equalities are difficult to solve analytically
(for example, if they are highly nonlinear), it
may still be worthwhile to solve them numeri-
cally. Such an approach has been used suc-
cessfully for structural design (Refs. 13 and
14).

12-3.4 THE KUHN-TUCKER CONDITIONS

The most important theoretical resuits in
the field of nonlinear programming are the
conditions of Kuhn and Tucker, which must
be satisfied at any constrained optimum, local
or global, of any linear and of most nonlinea
programming problems (Ref. 15). These con-

1211
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TABLE 12-2
OPTIMIZING CONSTRAINED PROBLEMS
Convexity Theorems VgER+0E>0 8. Otherwisz, define a new set
= . — of planes to be asociated with X;
the::;‘m 1. It fix) is convex, vr (i‘)f_ 15>0 by deleting from the present set
$Is=

R={xlf(x) <k}
is convex for all scalars (k).

Theorem 2, The intersection
of any number of convex sets is
convex.

Thecrem 3. If f(x) has con-
tinuous first and second derivatives,
the following throe statements are
all equivalent:

a, f(gc_) is convex;

::1 - ‘22 for any two
points Xy, %,

c. the matrix of second par-
tial derivatives of f(x) is
positive semidefinite for all
points £,

Theorem 4. A positive semi-
dcfinite quadratic form is convex.

Theorem 5. A positive linear
combination of convex functions is
convex.

Theorem 6. A function f(%) is
convex if and only if the one-
dimensional function g(a) = (X +
o5) is convex for all fixed X and 7.

Zoutendijk’'s Method of Feasible
Directions

1. Start with an initial point
X, which satisfies all constraints,
I-‘or i=0,1, .., do the following
steps.

2. At the cumrent point, x,,
determine which constraints are
binding (or almost binding) and
form the set I containing their
indices.

3. Choose a set of 0,(0<0 <
1) used to steer away from nonlin-
ear constraint boundaries.

4, Compute a new usable
feasible direction, 5;, by solving tne
direction-finding problem of mini.
mizing ¢ subject to the conditions

b. f(._tl) > f(xz) +Vv f'(xz)-

If the minimum vzlue of £ > 0, no
such direction exists and the com-
putation is terminated. The current
point is generally a local constrain-
ed minimum, If- £ < 0 proceed to
step 5.

5. Compute a step length o,
by minimizing f(x; + o5)) subject to
the condition that x; + o5, violates
no constraints.

6. Usnng a;, compute a succes-
sor point X =% + o; 5; and re-
tum tostepfthh i rephced byi+
1.

Rosen‘s Gradient-Projection
Method

1. Start at a point x¢ that sat-
isfies the constraints. The ith itera-
tion, i = 0, 1, ... proceeds as fol-
lows:

2. Compute V f(x)).

3. Determine which con-
streints are binding at ¥; and call
these the constraints associated
with X;.

4. Compute 5;, the projection
of — V f(x}), on the intersection of
the constraints associated with the
point x;.

5. If%; is not the zero vector,
compute a step length a; by mini-
mizing g(a) = /(X; + o&;) subject to
the condition that x; + o5; violates
no constraints. This determines a
new point X;41 = X; + a;f;. Retum
to step 2 and replace i with i + 1.

6. If5is zero, then

VIiE) = ? 18

which is a linear combination of
normals & to the binding constraint
planes,

7. If ail u; > U, then X is the
solution of the problem, for the
Kuhn-Tucker conditions are satis-
fied.

one plane for whick u; < 0, and
retumn to step 4,

The Fiacco-McCormick Conditions

1. The interior of the con-
straint set is non-empty.

2. The funciions £ and g; are
twice continuousdy differentiable.

3. The set of points in the
constraint set for which /(%) < k is
bounded for all k <o,

4. The function /(%) is bound-
ed below for X in the constraint set.

® If conditions 1 tkrough 4
hold, at least one finite local mini-
mum of (Xy) [see Eq (24)] exists
within the constraint set for any r
> 0. Furthermore, / is monoto-
nically nonincreasing as r is reduced
{Ref. 25).

5. [(%)is convex.

6. The g(x) are concave func-
tions.

7. P(x%y) is strictly convex in
the interiox of the constraint set for
anyr>0.

® If conditions 5 though 7
also hold, there is a convex pro-
gramming problem; any local mini-
mum is global, and the procedure
converges to the global minimum as
r=>0.

The Fiacco-McCormick Method

1. Start with X, which must
be strictly inside the constnint set,
andry >0, Leti=1,2,....

2. Minimize P(X, r;), starting
from X;.1, and subject to no con-
straints.

3. Reducer by ChOOSing T
< r;, and retum to step 2 with i
replaced by i + 1.

4. ULtop if the change in the
objective function fails tc ezceed a
specified value for some predeter-
mined number of iterations.
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ditions form the basis for the development of
many computational procecures. In addition,
the criteria for stopping many procedures
(i.e., for recognizing when alocal constrained
optimum has been achieved) are derived di-
rectly from these conditions.

The concept of a cone can be used to help
visualize the Kuhn-Tucker conditions. A cone
is defined as a set of pcints R such that, if x is
in R, Ax isalso in R for A > 0. A convex cone
R has the additional property that if x andy
are in R, x+ y is also in R. The set of all
non-negative linear combinations of a finite
set of vectors forms a convex cone; i.e., the
set R is a convex cone, where

R={x|x =X;X; + =+ + X, X5
. (12-17)

A2 0;8=1,...,,m}.
The vectors x; ,x, , - +.X,,, are called the gener-
ators of the cone. For example, the convex
cone of Fig. 12-10 is generated by the vectors
(2,1) and (2,4). Any vector that can be ex-
pressed as a non-negative linear combination
of these vectors lies in this cone. In Fig. 12-10
the vector (4,5) in the cone is given by

(4,5)=1-(2,1)+1-(24). (12-18)

The Kuhn-Tucker conditions are predi-
cated on the fact that at any constrained opti-

1 2 3

The shaded area represents a cons generated
by vectors (2,1) and (2,4).

FIGURE 12-10. Convex Cone

MO S
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mum, no small, allcwable change in the prob-
lem variables can improve the objective func-
tion. To illustrate this, consider the nonlinear
programming problem shown in Fig. 12-11. It
is evident that the optimum is at the intersec-
tion of the two constraints. At (1,1) in Fig.
12-11 the set of all feasible directions lies
between the line— x — y + 2 =0 and the tan-
gent line y = 2x — 1. In other words, this set
is the cone generated by these two lines. The
vector —Vf points in the direction of the
maximum rate of decrease of the objective
function f(x,y). A move along any direction
making an angle of less than 90 deg with -V f
will decrease f(x,y). Thus, at the optimum,
there can be no feasible direction with an
angle of less than 90 deg between it and —V f.

The negative gradients —V g, and —V &,
are also shown in Fig. 12-11;and — Vfis con-
tained in the cone generated by these negative
gradients. If —V f were not contained in the
cone, but slightly above —V g,, it would
make an angle of less than 90 deg with a feasi-
ble direction just below the line—x—y + 2=
0. Similarly, if —V f were slightly below —V
&,, it would make an angle of less than 90 deg
with a feasible direction just above the liney
= 2x — 1. Neither of these cases can occur at
an optimum point, and both cases are ex-
cluded if and only if — V f lies within the cone
generated by — V &, and — V g,. This is the
geometric statement of the Kuhn-Tucker con-
ditions; a necessary condition for x to mini-
mize f(x), subject to the constraints g,(x) > 0
where i=1,-+-,r, is that the gradient V[ lie
within the cone generated by the gradients of
the binding constraints.

In an algebraic statement of the Kuhn-
Tucker conditions, since V f lies within the
cone described, it must be a nonnegative line-
ar combination of the gradients of the binding
constraints. In other words, there must exist
numbers u, > 0 such that

)
Vf(x*) = E u; Vg,'(x*)

2 (12-19)

where the binding constraints a e assumed to
be g;,°+*&,,(p <r). This relationship can be
extended to include all constraints by defin-
ing the coefficient u; to be zero if g,(x*) > 0.

12-13
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X-y+2=0,

{

{
Constraint set (
4 W,
& N\ -
’-0 .
’ .

y =2x -1, tangent to g,

"

y=x?
0l | |
0 1 2

The objective function is shown by concentric
circles, and the constrained minimum is clearly at
the point (1,1). All feasible directions at this point
are obtained in the cone generated by the gradicnts
- Vg, and - Vg,, which are normal to the con-
straint boundaries.

ot £LTILE

FIGURE 12-11. Nonlinear Program lllustrating the Use of a Cone®

- enpilriedesitst
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If this is done, the product ug,(x*) is zero for
all i. Eq. 12-19 is the form in which the
Kuhn-Tucker conditions usually are stated.

If a minimization problem with inequaliiy
constraints is a convex programming problem
whose constraint set has a nonempty interior,
the Kuhn-Tucker conditions are both neces-
sary and sufficient for a point x to be a con-
strained minimum (Ref. 15).

Most existing nonlinear programming
methods can be classified either as methods of
feazible direction (such as Zoutendijk’s proce-
dure and Rosen’s gradient projection method)
or as penalty function techniques (such as the
Fiacco-McCormick method).

12-3.5 METHODS OF FEASIBLE DIREC-
TIONS

Methods of feasible directions use the
same general approach as the techniques of
unconstrained minimization, but they are
constructed to deal with -inequality con-
straints. The idea is to pick a starting point
that satisfies the constraints, and then to find
a direction along which a small move violates
no constraint and, at the same time, improves
the objective function. We then move some
distance in the selected direction, obtaining a
new and better point, and repeat the proce-
dure until we reach a point from which the
objective function cannot be improved with-
out viclating at least one constraint. In gener-
al, such a point 1s a constrained local mini-
mum of the problem, not necessarily a global
minimum for the entire region of interest.

A direction along which a small move can
be made without violating any constraints is
called a feasible direction, while a direction
which is feasible and at the same time im-
proves the objective function is called a usa-
ble, feasible direction. Since there are many
ways of choosing such directions, there are
many different methods-of-feasible-directions.

An iterative procedure of this type is illus-
trated in Fig. 12-12. The starting point is x,,
and the usable, feasible direction chosen is

so = — Vf(X,) - (12-20)

The procedure is to choose the distance
moved along s, so as to minimize f, and the
first improved point is x,. Here, a problem
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arises: proceeding in tha negative gradient di-
rection at x; would violate the constraints.
There zre many feasible directions in which
we could move from X, ; any direction point-
ing into the constraint set or along a con-
straint boundary would do. The “best” direc-
tion we can choose, however, is that feasible
direction along which f(x,) decreases most
rapidly, i.e., along which — ] Vf(x, ) is mini-
mizad. This is the feasii.e direction that
makes the smallest angle with — V f(x, ), and
is the projection of — Vf(x,) on the con-
straint boundary.

The farthest we can move along s, with-
out crossing the constraint boundary is to the
point x,. Repeating the smalliest angle proce-
dure leads us to x, with negative gradient
— V f(x4). At this point there is no usable fea-
sible direction, since no feasible direction at
Xy makes an angle of less than 90 deg with
—V f(x3). In this case, x; happens to be at
the global minimum of f(x) over the con-
straint set.

The global minimum is not, however, al-
ways reached by this procedure. In this exam-
ple, the same procedure, starting with y, in
Fig. 12-12, leads to a local minimum at the
point a, which is distinct from the global min-
imum at x3. This example illustrates the diffi-
culties such procedure may encounter with
local optima. These difficulties are common
to all methods, and one can be sure of avoid-
ing them only for a convex programming
problem.

12-3.5.1 Zoutendijk’s Procedure

Consider tire problem of minimizing f(x),
subject to the inequality constraints g,(x) > 0;
i=1,-+»,m. If a starting point x,, that satisfies
the constraints is assumed, the problem is to
choose a vector s which is both usable and
feasible. Let | be a set of indices i, for which
8;(x,) = 0. For all feasible vectors s, a small
move along the vector from x, makes no
binding constraint negative; i.e., for all { in the
set |,

d T
d— (8 (%, + as)] -0 =Vg;(x,)s> 0
@ « (12.21)

where a is the scalar parameter that deter-
mines how far along s one might go. A usable,

12-156
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The zig-zag motion shown here is time-consuming
and can be avoided by using Zoutendijk’s minimi-
2ation procedure.

FIGURE 12-13. An Inefficient Search Procedure*

12-3.5.2 Rosen’s Gradient Projection Method

At each iteration of Zoutendijk®s proce-
dure, an optimization problem must be solved
to find a direction in which to move. Al-
though this direction is in some sense “best”,
‘the procedure can be time-consuming. An al-
te'native is provided by Rosen’s gradient pro-
jection method, where a usable, feasible direc-
tion is found without solving an optimization
problem (Ref. 16). This direction, however,
may not be locally “best” in any sense.
Rosen’s method, probably most efficient
when all constraints are linear, uses the
Kuhn-Tucker conditions both to generate new
directions and as a stop criterion.

12-3.6 PENALTY FUNCTION TECH-
NIQUES

12.3.6.1 General

Since powerful methods are available for
unconstrained minimization, it would seem
convenient to solve constrained problems
using unconstrained methods. This is exactly
what a “penalty function”allows us to do.

Instead of dealing with the constraints
directly, penalty function techniques find the
unconstrained minim},l‘m of the function

px)=f(x)+ Y ¢lg(0)] (12-23)

i=1
whexe ¢[+] is the penalty function, yet to be
determined. For example, suppose that the
penalty function is ¢4(y), where ¢4(y) = 0 for
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¥y20, and ¢(y)=> e for y<O0. I all con-
straints g,(x) > 0 in Eq. 12-23 are satisfied,
the summation term contributes nothing and
minimizing ¥ is equivalent to minimizing f. If
any g; is less than zero, ¢4(g;) > « which is
certainly not anywhere near the minimum of
¥(x); thus, the summation term “penalizes”
any violation of the constraints. Any proce-
dure which minimizes ¢ will never select a
point outside the constraint set and will, in
fact, select that point of the constraint set
that minimizes f(x).

Unfortunately, there are certain difficul-
ties that must be overcome in order to use
this powerful technique. To illustrate them,
consider the problem of minimizing
x3 + x2 subject to the constraint x, > 3;
X =(x,,%,). We know in advance that the
solution to this problem is x, = 3, x, = 0. For
this example,

VX)=x2 +x2 + ¢y (x, — 3)
12-24)

Contowrs of ¢ in the feasiblc region (to the
right of the line x, = 3) are circles with center
at the origin, and the penalty-term Polx, — 3)
has no effect. Just to the lefi of (x,—3), ¢
becomes unhounded, so that as spon as we
move to the left from x, = 3, we immediately
cross all the contours of constant value. A
gradient minimization procedure starting at
Xo would move to the boundary at x, and
could proceed no further. In fact, since the
function ¢ is discontinuous and has no deriva-
tive along x, =3, minimization is almost
hopeless.

These difficulties may be relieved by de-
fining other, less “horsh” penalty funcsons.
For examaple, the function $1(¥), where
$,(¥)=0 for y>0 and ¢,(y)=ky? for
¥ <0, is continuous and has continucus first
derivatives for all values of y, (k> 0). if 9, is
used, the penally for constraint violations is
no longer infinite and some violations are pos-
sible,

Consider applying this new penalty func-
tion to the previous problem by minimizing

Vxy=x2 + 22 +¢,(x, - 3).
(12-25)

12-17
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The contours of this function to the right of
x, =3 are circular but to the lefi they are
elongated ellipses, showing the same bunching
effect as before. This effect gets worse as &
increases.

A gradual approach is more practical.
Rather than solve only one unconstrained
problem, we solve a sequencs of such prob-
lems, each one bringing us closer to the final
solution. For example, we can solve the prob-
lem with a small value of k. Then, using that
solution as a starting point, choose a larger
value of k and re-solve the problem. Repeat
the procedure several times. In general, the
sequence of unconstrained minima ap-
proaches the solution of the original con-
strained problem,

When the penalty function ¢, is used,
intermediate solutions usually violate the con-
straints. Thus, the method approaches the
constrained minimum from outside the con-
straint set. In many.cases, this may be unsatis-
factory. If small violations of the constraints
are not permitted, intermediate solutions
often cannot be used. The method is ineffi-
cient if the objective or constraint functions
are ill-behaved exterior to the constraint set.
Moreover, the approach cannot be used at all
when any of these functions is not defined
outside of the constraint set.

12-3.6.2 The Fiacco-McCormick Method

The Fiacco-McCormick method avoids the
difficulties we just described by approaching
the optimum from inside the constraint set
(Refs. 17 and 18). To use this method, we
first define the function

n

Ve =fo)+r Y L

w1 &) (12.96)
where r> 0. Let r; > 0 and choose X, inside
the constraint set. In the problem of minimiz-
ing ¥(x,r, ) starting from X, and subject to no
constraints, a minimum must exist inside the
constraint set, since ¥ (x,r;) = on the
boundary of this set (because some g,(x) = 0).
Thus, the path of steepest descent leading
from the point X, (a path on which ¥{(x,, ) is
strictly decreasing) cannot penetrat: the
boundary of the constraint set. The minimiz-

12-18
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ing point depends, of course, on the choice of
ry, i nd is denoted by x(r, ). By this reasoning,
x(r, ) will 2lways be inside the constraint set.

If this minimization process is repeated
for a sequence of valuesr, >r, > <+ 1, >0,
each minimizing point x(r;) also will be strict-
ly inside the constraint set. Furthermore, as
the value of r is reduced, the influence of the
term which “penalizes” closeness to the con-
straint boundaries (the last term in Eq. 12-26)
also is reduced and, in minimizing ¥ (x,r),
more effort is concentrated on reducing the
f(x) term. Thus, the sequence of points
x(r; ),x(ry),*++ can come as close as necessary
to the boundary of the constraint set. We
would expect that as r approaches zero, the
minimizing point x(r) approaches the solution
of the original problem of minimizing f(x)
subject to the constraints g; > 0.

This method is particularly attractive in
dealing with problems that have markedly
nonlinear constraints, since it approaches the
solution value from inside the constraint set.
Motion along the boundaries of this set,
which can be very cumbersome when the
boundaries have large curvature, is completely
avoided.

Fiacco and McCormick have shown that
all the previous conjectures are true under cer-
tain conditions (see Table 12-2). Condition 7
is not implied by conditions 5 and 6, but only
small additional requirements on f and g; are
needed for it to hold (Ref. 16).

The Fiacco-McCormick procedure is given
in Table 12-2. Step 2 may be accomplished by
any of the unconstrained minimization proce-
dures in this paragraph. In Step 3, r ought to
be reduced by dividing each time by the same
factor.

12-4 DYNAMIC PROGRAMMING

Dynamic programming is a general ap-
proach for, solving a sequential decision proc-
ess. Optimization is merely one kind of se-
quential decision process. This topic is not
grasped easily from a short exposition, nor is
it often practical for reliability problems,
except when the problems can as easily be
solved another way. Therefore, several refer-
ences (Rafs. 19-22, 34) are giten for further
study, should tke need arise,
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Dynamic programming suffers from a
major drawback-dimensionality. Problems
with two or three state variables may be
solved with increasing difficulty; and solution
with more than three state variables is very
difficult. This is because the functions f;(h),
where h is the state vector of dimension k&,
must be tabulated over a k-dimensional grid.
If each dimension has 10 subdivisions, this
requires the storage of 10* numbers, which
generally exceeds the fast memory space of
most computers for k > 4. Any increase in k
is then quite difficult and can be accomplish-
ed only by trading memory space for compu-
tation time.

12-5 LUUSJAAKOLA METHQD

Luus and Jaakola developed a very simple
method for optimization by direct-search and
interval-reduction, Refs. 35 and 36. It is ex-
tremely simple to program, evaluaies no deriv-
atives, does not invert any matrices and can
handle inequality constraints. Equality con-
straints are presumed to have been eliminated
by usual methods.

For integer problems, e.g., parallel redun-
dancy, Luus has extended the method, again
in a very simple way (beth programming and
conceptually), see Ref. 36. Especially for the
novice, but even for the high-powered theo-
rists, this method has a great deal of appeal
and utility. Ref. 36 is reproduced as Ap-
pendix A,

12-6 APPLICATIONS

It is difficult to find good nontrivial appli-
cations of complicated reliability optimiza-
tion in the literature. Generally, in the litera-
ture, the analyst has to make too many unre-
alistic assumptions, or picks a problem no one
in practice is really going to care about. For
example, cost and weight are usually major
real constraints; but there is not a continuum
of equipments available with reliability tabu-
lated as functions of cost and weight. Solving
for optimum parallel redundancy in the pres-
ence of constraints is another favorite prob-
lem. But rarely are there more than a few
redundant units; so the calculations cculd
easily be carried out for all feasible combina-
tions.
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One ought to be concemed with the re-
gion around the optimum point. If it is very
flat, then it makes little difference where, in
the flat region, one chooses a solution. There
are usually many important variables, mostly
qualitative, that are left out of the formal
analysis. These may well determine where in
the flat region one chooses the solution.

If there are a great many independent
variables, it is difficult to visualize the
“space” in which the problem is to be solved.
The ramifications of assumptions and solu-
tions are difficult to grasp. Therefore, most
big problems ought to be reduced to a series
of little ones whose meaning can be compre-
hended. If necessary, one can go back after
the first trial solutions and modify the way
the little problems were formulated.

Perhaps the biggest difficulty of all with
optimizing a very large problem is that when
it is finished, people tend to be extremely
pleased and impressed. They tend to believe
that they now know the answer to some real-
world problem. But they don’t. What they do
know is the answer to a mathematical prob-
lem which contains gross approximations (to
be tractable) and which was solved with
guessed-at data. Since “no one” can under-
stand the whole problem at once, there is a
tendency to grasp the computerized solution
like a2 drowning man grasping at straws.

Obviously, some very complicated prob-
lems have been solved by optimization tech-
niques. These tend to be problems where
plant process operation is quite well known,
but where the magnitude of the calculation is
just too much. The models themselves tend to
be rather simple in concept; their complexity
comes from their scope.

Some journal articles which apply optimi-
zation techniques are Refs. 22-33; Ref. 33 isa
relatively new approach. Anyone who wishes
to apnly optimization techniques to compli-
cated reliability engineering problems ought
to find professional assistance from people
who are skilled in using the available comput-
er programs. To begin from scratch is usually
to waste inordinate amounts of time and
money, except that the Luus-Jaakola method
(par. 12-5) can be used by almost anyone--
conceptually and practically it’s so simple.
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APPENDIX A*

Optimization of System Reliability by a New Nonlinear Integer
Programming Procedure

Abstrect—This papet p ts 2 weeful procedure of solving nonlinear
nte.n prograniming pmue-s. It rum, ﬁm. 1 prendo-solution 10 the
P 1, a8 if the variasbi Then it uses direct scarch
nhuﬁmmdmmmwﬁdm”mun The
effectiveness of the method is shown with 3 15-varisble problem, which
requires about 1 dsy's FORTRAN programming effort sad 8 seconds
of computer time for its solution on an IBM 370/165 digital computer.

Reader Aids:
Purpose: Widen state-of-the art.
Special math needed for expianations: None
Special math needed for results: None
Results useful (0: Design and retiability engineers, programmers.

INTRODUCTION

NCREASING reliability by the introduction of redundancy

is well known. However, the problem of how to optimize
the reliability through the sclection of redundancy has not yet
been 2dequately solved. Tillman and Liittschwager {1] pre-
sented an integer programming formula’.on for the solution
of reliability problems. The method requires transformation

Misra [2] discusses the overall applicability of integer program-
ing approach to solving reliability prodlems; latcr Misra {3} in-
troduces the use of Lagrange multipliers and the Maximum
principle to solve reliability optimization problems. Sharma
and Venkateswaran [4] presented a simpler method wath no
assurance of obtaining the true optimum. Banerjee and
Rajamani (5] use the Lagrange multiplier approach to solve
the reliability problem to yield optimum or near optimum
results. Misra and Sharma [6] classified the methods into two
groups, one which includes methods which require simple form-
ulation and yield approximate results and the other which
includes methods which are complicated but yield an exact in-
teger solution to the problem. These authurs then provide a
geometric programming formulation for the reliability problem
which gives an approximate answer.

The purpose of this paper is to present a method which s
casy to formulate and which gives an optimum for the reh-
ability optimization problem. Although there is no assurance
of obtaining the global optimum, in practical problems the
method will come very close to finding the global optimuin.

PROBLEM FORMULATION

Maximize a nonlinear function of n variables denoted by

fxy, X3, 00 X))

*Copyrighted 1975 by Institute of Electrical and
Electronics Engineers, Inc. Reprinted with parmission.

of the objective function and introduction of auxiliary variables.

subject to the ~onstraints
gl(x,.x,, ....x")<b,.i= L2,..m 1)
Xpi=1,2.., nmust be positive integers (V)]

The constraint functions & need not be linear and the number
of inequality constraints m need not be less than n. A proce-
dure involving theee steps is proposed.

SOLUTION TO THE GENERAL PROBLEM
Step 1: Solution to the Pseudo-Problem

Relax the condition of requiring each x, to be integer and
solve the maximization problem as if the variables were con-
tinuous. Only an approximate solution is necessary to this
pseudo-problem.

Step 2: Filling in the slack by stecrest ascent

Take the values of x; obtained in Step 1 and convert them
to integers by truncation (toward zero) so that the inequality
constraints {1) are satisficd.

There may now be adequate slack in (1) to allow an increase
in at least one of the x, Therefore, attempt to increment each
x; by [, check to see if (1) is satisfied, and increment only the
x, which gives the greatest contribution to the maximization of
1. Continue this filling ¢ f sfack until no x, can be incremented
without violating at least one of the constraints.

Step 3: Systematic exchange of variables

Carry out n(n — 1) tests whereby one variable is incremented
by 1 and the others are decremented by 1 in turn  For example,
suppose X, is incremented to x, + 1. Now decrement x; to
X3 = 1 and check whether inequalitics are satisfied. if so, then
calculate the corresponding value of fand compare that value to
the maximum fin Step 2. If the most recently calculated fis
greater, then retain in the memory the fact that x, incremented
by 1 and x; decremented by 1 gives a better value. llowever,
before making a change in this variable, continue through the
entire cycle up to x,. Then choose the set x, which has given
the greatest value for £, Perform the cycle by inctementing x,
and continue with x3, x4, etc. up to x,.. In total, there are
thus a maximum of n(n - 1) tests to be done. The set giving
the largest value of £ is retained as the optimum.
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TABLE 1
Relishllity, Cost and Weight Factors for Exasaple 1
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Stage number Rabiskitiey Cost  Weight Allocation (x)
i /] & w Seop 1 Swp 3
1 0.90 12 1.0 s3 6
2 0.7 23 1.0 6.3 ¢
3 0.75 34 1.0 5.2 s
4 085 45 1.0 s 4
Systom sebiobillity 0.9979 0.9977
System cost (56 max) 5.0 56.0
System weighit (30 max) 20.7 10
TABLE 2
Reliability, Cost and Weight Factors for Example 2
Stage Numober Relishility Cost  Waight Allocation (x;)
{ ] (7] wy Step 1 Swp3
1 0.90 H s 9 3
2 0.2 4 9 4.2 4
3 0.65 9 6 4.9 ]
4 0.30 7 7 37 3
s 0.88 7 s 3.0 3
6 0.93 s ] 23 2
7 0.78 6 9 34 4
s 0.66 9 6 5.0 H
9 0.78 4 7 4.0 4
10 091 § 8 27 3
11 0.729 6 9 35 k]
12 0.77 7 7 37 4
13 0.67 9 6 sS4 ]
14 0.79 8 s 4.3 )
1§ 0.67 6 7 3.0 5
System reliability 0.952 0.945
System cost (400 max) 386.0 389.0
System weight (414 max) 413.7 414.0
EXAMPLES For Step 1, it is easiest to use the optimization meth- J of

Since there is no assurance that the global optimum is
reached, it is instructive to test this method by applying it to
a class of reliability problems which have been handled by
other methods.

Example 1

The reliability probiem [6] maximizes the rehbility func.
tion
(1=q- )

/= 3)

4
i1

subject to the constraints

4
2 ox <56 @
':f:‘ wx, <30 ©)

There are 4 stages and the reliability, cost, and weight factors
are given in Table 1.

Luus and Jaakola [7] ; see the Appendix for the simple algoci-
thm. The initial value for each x,, i =1, 2, ..., 4 was chipsen a3
2.0, the initial region for the random numbess as 5.0, the re-
auction factor for the regions after each iteration was chosen
to be 04-2, and 100 iterations were specified. The algorithm
for step 1 is given in the Appendix.

At the end of Step | the results are as shown in Table 1.
These values of x, were then truncated and Steps 2 and 3 were
performed to yield the results shown in Table 1. The answer is
better than that obtained by Misra and Sharma [6].

The total computation time by the 3-step procedure was 3
seconds on {BM 370/165 digital computer, during which the
reliability function was evaluated 5384 times.

Example 2
To provide 2 more rigorous test of the proposed procedure,
consider a 15 stage reliability problem where the constraints

of (4) and (5) are 400 and 414 respectively; the rehiability, cost
and weight factors are in Table 2.

12.
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Exactly the tame computational procedure as in Example |
was used. The results after Steps 1 and 3 are given in Table 2.
The total number of functica evaluations was 5362 and the
computaticn time was 7.8 seconds.

DISCUSSION

The negligible computation time for the 15 stage reliability
problem shows that the proposed method is very useful for
solving reliability problems where discrete units are specified.
To emphasize that the recommended procedure does not in-
volve exhaustive enumeration requites caly a very simple calcu-
Iation. Suppose we look at the possibility of having either 1, 2,
3,4 or 5 units at each of the 15 stages. To evaluate all possibili-
ties wouid require 5'* =3 X 10" calculations, which is an
immense, completely impractical anumber.
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APPENDIX

Algorithm for Direct Random Search and Interval R eduction
[Equality constraints are presumed to have been eliminated)
i

Notation:

x  the set of x, which are the unknowns
x*U) the center value of x at iteration j which corresponds to

the best value of x at iteration j~ 1.
A the set of r, which are the ranges for direct search at
iteration /; the direct search for x, is over the range.

{
x20—05rD<x, <x2D 40574
Y apseudo random number, uniform over the range —0.5

t00.5
n  total number of iterations, e.g. n = 100

p  number of random trials for each iteration, e.g. p = 100

€ the small number by which the range is reduced for each
iteration, e.g. € = 0.02

Algorithm:

0. Choose initial values x*) and AN setj= 1.

1. Calculate p sets x, ) = x,*D) + y r(); y is a new pseudo
random number for each calculation.

2. Test tise inequality constraints, retain only those xU? that
satisfy the sonstraints. Calculate the objective function for
each retained x0),

3. Find the xU) which maximizes the objective function. Call
it x*U), the center valuc for next iteration. 1f the maximum
number of iterations is reached, stop.

4. Caleulate r¥*1) = (1 — e)r{). Increment f and go to Step 1.
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CHAPTER 13 COMPUTER PROGRAMS

13-1 INTRODUCTION

Modern computers are powerful tools that
can be used by the engineer to compute the
reliability characteristics of complex systems.
A variety of mathematical methods have been
developed which can be applied to solving
many different types of reliability problems.
Programs are available for computing param-
eters such as reliability, availability, and MTF
for repairable and unrepairable systems.

Some of the programs can handle very
large systems of hundreds of elementary units
for which failure and repair information must
be provided. Other programs permit cost-
effective systems {0 be designed by comput-
ing optimum allocations of redundant units
which obey constraints on weight, size, cost,
and other factors. Simulation techniques have
been developed for systems that are too com-
plex to be evaluated by other methods.

A large number of computer programs
have been developed for predicting the relia-
bility parameters of systems. These programs
have been written by many companies for a
nuinber of governmental agencies. Some of
the programs were developed for a specific
system, and some are more general and can be
applied to many system configurations.

13-2 MATHEMATICA'S AUTOMATED RE-
LiABILITY ARD SAFETY EVALUA-
TION PROGRAM (MARSEP)

MATHEMATICA, Inc., developed a pro-
gram that automates the evaluation of the re-
liability and unreliability of electromechanical
systems (Ref. 1). MATHEMATICA’S AUTO-
MATED RELIABILITY AND SAFETY
EVALUATION PROGRAM (MARSEP), was
originally developed for the SANDIA Corpor-
ation for use in evaluating nuclear weapon
systems. It can be used for both reliability
and unreliability calculations. The unreliabili-
ty calculations are used in system safety anal-
yses where unreliability terms of very small
magnitude may be very important.

MARSEP provides a means of computing
an exhaustive Boolean expression that in-

_cludes all possible success and fzilure events.

MARSEP has been programmed for compu-
ters at the Picatinny Arsenal and the Harry
Diamond Laboratories.

MARSEP accepts as input a description of
the system and a definition of system success.
The computer determines which combina-
tions of component events are required for
system operation and system failure.

The system description contains a list of
individual system components and their oper-
ating and failure modes. A set of two events,
success and failure, must be defined for each
component. Failure of any individual compo-
nent does not cause failure in any other com-
ponent.

A simple circuit consisting of a battery,
switch, relay, light, and squib is shown in Fig.
13-1. The circuit description includes all ter-
minals and wires, including the ground termi-
nal. In using MARSEP, it is assumed that pos-
sible failure in connections and wire leads are
important and must be considered.

A model must be prepared from the cir-
cuit diagram. The MARSEP model is a block
diagram whose elements represent the individ-
ual system components, their possible failure
modes, and operating conditions. Some of the
symbols used to prepare a MARSEP model
are shown in Table 13-1. The MARSEP model
for the sample circuit is shown in Fig. 13-2.

MARSEP provides a modeling language
that is used to describe the elements in the
MARSEP model and their interconznections.
Each element in the MARSEP model must be
given a name for use in the system description
part of the input data. For example, in Fig.
13-2, the battery is defined as BATTRY, and
the short mode of failure is called SHORT.

A set of symbols is also required, each
symbo! representing the probability of occur-
rence of the usual (most likely) event(s) for
each element in the MARSEP model. The pre-
fix P is used to identify events which corre-
spond to a component functioning successful-
ly, or transmitting a signal, or both. The pre-
fix Q identifies events associated with a com-
ponent failing to function, or opening the cir-
cuit, or both. Both types ofsymbols are
referred to as P Names. Table 13-2 shows the

13-1
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TABLE 13-1 MARSEP MODELING SYMBOLS"

MODELING BOXES. with electrical interpretations

BASIC MODELING. Passes signal from input (1) to cutput
{2). Has success and failure svents associsted with
it.

SIGNAL SOURCE, Thiz box produces a signal at {2). It can
be affected by shorts to ground and connections to
ground.

AND BOXES. Thess boxes usually need both a usual input
(1) and a second input (2) in order to provide an
output at (3). There is a second event set defined
for the situation when the input at {2) is missing.

SHORT-TO-GROUND. If this box fails the circuit is shorted
to ground.

FUSE. This box indicates a point in the circuit which should
open when a signal passes through it.

BOX OR TERMINAL MODIFIERS

QUALITY SENSITIVE. Indicates that the box on which this
appears is sensitive to the type of input received.
A different event set is defined for each type of
input. Signai types are defined at their source.

ENVIRONMENT. An externally determined input that provides
for conditional event sets in the model.

MODELING DIODE. Indicates that a high resistance to ground
exists within the box to which it is attached. This

is interpretod as preventing a ground connection from
draining a signal source.
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TABLE 13-2

ASSIGNMENT OF P NAMES TO SIMPLE CIRCUIT MODEL!

ELEMENT NAME

BATTRY

SHORT

START

COolL

CONTCT

LIGHT

FUSE

sauis

WIRE

P_NAME

PVOLT
PSTG
PCLOS
QOFF

PPICK

PCONT
QERLY
PLITE
POPEN
PBLOW

PGGOD

EVENT

battery delivers proper voltage

short to ground does not occur at this point
switch closes when pressure applied

switch remains open before pressure is applied

symbolizes the event that coil p.cks contact when
proper input is applied

contacts provide continuity when picked
contacts remain open before reluy is picked
light burns when proper voltage applied
squib open when proper input applied
squib fires when proper voltage is applied

wire carries signal applied

13-4
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Elomont
MARSEP Model Element Name P Neme
Satiry SATTRY  PVOLT
Shaet in Detsery SHORT rSIG
St t swstch START PCLES, QOFF
Reley cod coiL PPICK
Reley contacts CONTCT  PCONT OERLY
Lpht LIGHT PLITE
Fute action of syud FUSE POFEN
Squds SQuie raLow
Wue WIRE rGOOO

FIGURE 13-2. MARSEP Model of Simple Circuit!

P Names assigned to elements in the sample
system and the events which they define.

Special component properties and envi-
ronmental or outside factors can be included
in the MARSEP model. For example, in Fig.
13-2, the effect of the hiuman operator who
turns the system on and off is shown as
START with the corresponding P Names
PCLOS and QOFF. The effects of pressure
and temperature, as well as enabling proce-
dures, also can be included.

By use of the MARSEP modeling lan-
guage, the element names, and the P Names,
the MAP.SEP model is converted into a series
of statements which become the input to the
MARSEP program. Table 13-3 shows some
elements of the MARSEP modeling language.

The MARSEP program consists of three
subprograms: (1) the preprocessor, (2) the
analyzer, and (3) the postprocessor. The
system to be analyzed is represented in the
computer by lists of components and a list
structure for each component and terminal.

The preprocessor accepts as input a descrip-
tion of the system which is converted into the
required format for the analyzer. Then, the
analyzer, written in Information Processing
Language V (IPLV), generates the success and
failure expressions for the system. The post-
processor substitutes the external names pro-
vided in the input for the internal symbols

used by the analyzer. The equations generated
by the analyzer are not altered by the post-
processor, The MARSEP v ogram also edits
and applies set theory to the success and fail-
ure expressions.

For the system in Fig. 13.1, the MARSEP
program would perform an analysis of the ef-
fects of shorts-to-ground and spurious electri-
cal connections (shorts) on the operation of
the system. In the shoris-to-ground analysis it
is assumed that components transmit a signal
that must be maintained at some level other
than the level associated with ground. All
ground terminals or possible connections to
ground are, therefore, examined to determine
if they can possibly nullify a useful signal in
the system. Special messages are printed in
the program output which indicate when use-
ful signals are nullified at their source by a
connection to ground. Shorts between termi-
nals in the system are checked to determine if
they can cause undesirable operation. The
user can designate in his input statements
where shorts are likely to occur, and the pro-
gram also will search automatically for shorts.

Outputs prepared by MARSEP for the
sample circuit are presented in Table 13-4.
Two expressions are developed for system
success. The first expression is for system suc-
cess when the environment EHAND is applied
in such a way that the switch is open. The

13-5
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TABLE 133
MARSEP MODELING LANGUAGE!

A2 (P namej

This attribute states the probability that the given element works, given all

proper inputs, is P name.

A3 (B name, P name)

Denotes the element receives an enabling input from element B name. In the

absence of that input, the element will give an output with probability P name. (The

probability of nonoperation given a proper enabling input is given by A2)

A4 (B name 1,............. B name n)
Denotes the element has enabling ouputs to the elements B name T..............
B name n.

A14 (E name, P name)

E name is the name of some environment. It is any item such as HEAT,
PRES 6, RAD 2, etc., that is listed as an environment. P name is the probability
- that the element functions in the absence of named environment.

A6 (T name, A name, N name, P name®*, N name, P name*"**N name P name)

Thus, AB is followed by a compound list:

T name (or V name) is the name of an input terminal to the element which is
dependent upon the value of the input signal (quality input).

A name is either A10 if the input is voltage-sensitive, one of the attributes,
or A50 through A90 for nonvoltage sensitive sources. The A number may be left
out of subsets after the first subset. In this case it will be interpreted to be the
same as the last one listed,

N name is either a value of the input signal at the terminal in question
{i.e., an integer) or an item with head N which will symbofically indicate a signal level.

P name is the prcbability of operation given N name. The probability of non-
operation given the usual value of N name is given in A2.

Only one A6 is allowed per element.
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TABLE 133 (Cont'd)
MARSEP MODELING LANGUAGE
- L. A8
Fuse behavior
A9
-~ = Short to ground
A10 (T name, N name)
Indicates that the named terminal is voltage source whose value is
7 given by N name. N name is defined as for A6.

Ann (T name, N name)

nn can range from 50 through 90. This set is used to identify a power source
L other than a voltage source.

A12
Indicates Q name of A2 is very near to one.

Any box that Ao09

has an A6 Terminal device

attribute

A2 (see format discussed above)
A3 (see format discussed above}
A14 (see format discussed above)
A16 (see format discussed above)

P name for A16 attribute is probability of operation given no environment
and activation,

. A17 (E name 1, P name 1, E name 2, P name 2, P name 3)

A2 (same format as is discussed above)

where:
P name 1 is probability that box operates given E name 1 is preseni.
P name 2 is similar to P name 1.
P name 3 is probability of operation given £ name 1 and E name 2 are absent.

> |- A7 (T name,....cceennn. T name)
Indicates that the named terminals will not propagate a ground.
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second expression is for system success when
the switch is closed by the hand.

13-3 GENERAL EFFECTIVENESS METH-
ODOLOGY (GEM)

The GEM system was developed by the
Naval Applied Sciences Laboratory in order
to provide engineers with a user oriented relia-
bility evaluation technique (Refs. 2-5). The
user interacts with GEM by means of a lan-
guage especially developed for use in reliabili-
ty problems.

The GEM system consists of the GEM lan-
guage, a System Library, a Formula Library,
and a program system containing a processor
and update programs.

The GEM processor is designed to accept
descriptions of reliability block diagrams to-
gether with associated data and to calculate
one or more reliability measures. The descrip-
tion and computed results can be stored in
the System Library which can later be retriev-
ed, modified, and re-evaluated.

The Formula Library contains a set of
mathematical subroutines for computing vari-
ous reliability parameters, relieving the engi-
neer of the burden of constructing a new pro-
gram for each new system evaluation.

The GEM program system was developed
using a modular approach that facilitates the
modification of existing programs and addi-
tion of new routines as needed. The general
organization of the GEM program system is
shown in Fig. 13-3.

GEM can be used to support systems de-
velopment, trade-off analyses, evaluation, and
optimization. The processor is structured to
evaluate variables such as reliability with or
without repair, instantaneous availability, and
interval reliability for systems that include
such hardware interdependencies as bridge
networks, shared elements, standby equip-
ment, and environmental strategies and priori-
ties inciuding repairmen and spare parts pools
(see Fig. 13-4),

13-3.1 STRUCTURE OF GEM
The engineer using GEM provides a sys-

tem description consisting of a reliability
model; failure, repair, and replacement rates;

A Habiines X -
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the up-state rules; replacement and repar
strategies; and support constraints for the
system. The support constraints are the num-
ber of repairmen and their specific assign-
ment, the number of spares pools, the spares
in each pool and identification of the items
that share each pool, allocation strategies to
be used in cases of conflicting demands on
repairmen and/or spares, and identification of
items to be held in standby. The user also
specifies which reliability parameters are to be
calculated by the GEM processor.

The system description is written in the
GEM System Definition Language, and the
parameters to be calculated are stated in the
GEM Command Language (Ref. 4). The Com-
mand Language also is used to make modifica-
tions to previously defined system descrip-
tions.

The System Library is a magnetic tape
containing system descriptions, calculation re-
quests, and calculated results for previously
evaluated systems (Ref. 5). The Formula Li-
brary is a magnetic tape containing the formu-
las and computer routines for calculating the
reliability parameters that are part of the
GEM system (Ref. 5).

The GEM processor refers to the System
Library (if the system has been previously
evaluated) and the Formala Library, while it
first translates the system description and cal-
culation requests into a mathematical model
for computing the parameters requested, then
performs the calculations, and finally, prints
the results.

Error-checking routines are built into the
processor to detect omissions, inconsistencies
in the description or data, wrong parameters,
impossible values of parameters, and other er-
rors. When errors are detected, the processor
prints error messages that define the nature of
the errors and their location.

The GEM system also contains a set of
Library Update Programs for generating,
mainiaining, and updating the System Library
and the Formula Library.

The GEM system provides a printed out-
put in the form of a tabulation of computed
results or a plot output. The user’s original
system description is presented as part of the
output.
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GEM
Program
System
Formula Library GEM System Library
Update Program Processor Update Program

FIGURE 13-3. GEM Program System Organization*

The GEM program was implemented on a
CDC 6600 computer located at the Courant
Institute of New York University. Minimum
requirements for running the program are
135,000 words of memory for most problems
and 300,000 words for calculating reliability
with repair and availability of systems with
nonexponential failure and/or repair distribu-
tions. The GEM processor was designed using
the Chippewa Operating System.

13-3.2 THE GEM SYSTEM

The computer equipment configuration
required by the GEM processor is:

1. CDC6600

2. Five magnetic tape drives

3. Disc file

4, Card reader

5. Printer.

All possible GEM inputs and outputs are
illustrated by the GEM flow diagram, Fig.
13-5. The GEM processor requires formula in-
put and system definition input. Formula in-
put takes one of the three following forms:

1. Previously created formula library
tape.
2. A new formula library tape, created

13-10 °

e

from a set of cards, containing variables, for-
mulas, and update commands.

3. A revised formula library tape created
from a combination of the two preceding
forms—i.e., a previously created formula libra-
ry tape, plus a set of cards containing addi-
tional variables, formulas, update commands,
etc., which would result in a revised formula
library tape.

System definition input takes one of the
three following forms:

1. A set of cards containing system defi-
nitions, evaluation wverbs, and (if desired)
modification verbs.

2. A previously created system library
tape plus a set of cards containing evaluation
and modification verbs (and, if additional
systems are required, a set of cards containing
new system definitions).

3. A previously created print file tape
(containing system definitions) plus a set of
cards containing evaluation and modification
verbs (and, if additional systems are required,
a set of cards containing new system defini-
tions).

Output consists of a printout sheet (print-
ed output listings) and a magnetic tape (Print
File).
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There are three phases to GEM. During
Phase 1, information is read (transferred) into
the computer, error checked, and stored in
files within the computer in a compact form.
Phase 2 processing involves making the modi-
fications indicated by the original modifica-
tion commands. In Phase 3, the newly created
system is used to generate a FORTRAN
source program, to permit the calculation of
the systems effectiveness measures. The FOR-
TRAN program is compiled and executed, the
answer tables are created, and, subsequently,
the output (a printout of the evaluated sys-
tems and error messages and a print file tape)
is generated.

13-3.3 THE GEM LANGUAGE
13-3.3.1 The System Definition Language

Some of the basic elements (vocabulary)
of the System Definition Language are (Ref.
4):

Levei Number

Duplicate Number

Item Name

Formula Name

Parameters

Environmental Vectors (E Vectors).

The Level of an item is its level of com-
prehensiveness or its position in a hierarchy
that represents the manner in which the user
views the system.

Th.: Duplicate number of an item states
the number of identical items in a system and
is used to avoid having to describe identical
items more than once.

2Bl R

The item Name is used for identification
and is arbitrarily chosen by the user. Names
need not be unique except for items of the
same level if they are not identical.

The Formula Name is either a statement
of the relationship that items in a lower level
bear to one another, or it identifies the name
of a failure and/or repair distribution associ-
ated with a lowest level item.,

The Parameters serve as either further
clarification of the relationship stated in the
formula or they give the parameters of the
failure and/or repair distributions associated
with the *owest level items.

AMCP 706-197

Environmental Vectors serve two basic
functions. They enable the user to describe
complex configuration or upstate rules which
cannot be stated in terms of series-parallel
statements. They also enable one to specify
constraints with respect to repairmen and/or
spares as well as their deployment and the
order of priority to be followed when there
are not enough repairmen and/or spares for
every item that is in a downstate.

13-3.3.2 lljustration of the System Definition
Language

The concept used in describing a system
configuration in GEM permits the connectivi-
ty of the items in a block diagtam to be de-
fined in stages (levels of comprehensiveness)
so that more detail is stated at each level until
the lowest level item is reached. In effect, the
block diagram consists of a hierarchy of levels
and, at each level, the appropriate relationship
of the items just one level below is defined.
To illustrate this procedure, consider the
block diagram in Fig. 13-6.

The system in Fig. 13-6 is made up of two
subsystems connected in series. The first sub-
system consists of four identical items and the
upstate rule is that at least two must be up
(2-out-of-4:G). The second subsystem is a par-
allel-series configuration. The breakup of a
system in terms of its levels can be porfrayed
by a GEM diagram. For the exaraple in Fig.
13-6 this would have the form shown in Fig.
13-7. The description of this system in the
GEM Definition Language would be as in Ta-
ble 13-5,

In Table 13-5, the eniry in the Formula
column designates that at the 01 level, the
ritle of combination for the two 02 level items
(SBSYS1 and SBSYS2) is the statement that
these items are connected in series (SER). It is
not necessary to state the mathematical for-
mula for a series connection, only its code. At
the first 02 level, the Formula entry is PAR to
designate that the four 03 level items are con-
nected in parallel. The entry in the Parameter
column, M = 2, states that at least two of the
05 items must be up in order for the 02 item
to be up. The entry of 4 in the Dup. column
for item A states that there are four identical
items, each called A, and the FENO entry in
the Formula column states that the times to

13-15
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Level
o1
SYSTEM
i ]
SUBSYSTEM SUBSYSTEM
1 2
02
l
1 1 1 [ ]
A A A A
03 AB CDE
m Gie
05 o] [E]

FIGURE 13-6. Sample System for GEM Analysis*
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FIGURE 13-7. GEM Diagram for Sample System®
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TABLE 135

SYSTEM DESCRIPTION IN GEM SYSTEM DEFINITION LANGUAGE*

-
®
<
R

|

01

02

03

02

03

03

8

05

3

SYSTM

SBYS1

A

SBSYS2

AB

A

B

CDE

CE

Formula_ Parameters
SER

PAR M=2
FENO A=

PAR M=1
SER

FLNO u=,a=
FWNO a=,f=
SER

FGNO o= ,8=
PAR M=1
FLNO u=,0-=
FTNO H=,0-=

13-17
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TABLE 13-6
GEM SYSTEM DEFINITION LANGUAGE FORMULA SYMBOLS*
FORMULA NAME MEANING PARAMETERS
FENO One pisce of squipment with RLAM - Faijlure Rate
exponential failure and no repair
FWNO One piece of equipment with ALPH - TIME PER
Weibull failure and no repair. FAILURE
BETA -
FGNO One pisce of equipment with ALPH - TIME PER
gamma failure and no repair. FAILURE
BETA -
FLNO One piece of equipment with log- XMU -
normal failure and no repair. SIG -
£TINO One piece of equipment with MU -
truncated s-normal failure and SIG -
no repair.
SER The subsystems are in series. All the resultant names of
the subsystems must be X.
PAR The jubsystems are redundant M - The number that
(parallel) of which M must be must be working.
working. All the resultant names of
the subsystems must be X.
LIN The subsystems are identical M - The number which
and layed cut in a linear array. must be working.
M must be working and no two The resultant names of the
adjacent subsystems may have subsystems must be X.
failed,
GIR The subsystams are identical M - The number which

and layed out in a circular
array. M must be working and
no two adjacent subsystems may
have failed.

must be working.

The resultant names of the
subsystems must be X,

13-18
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failure of item A are exponentially distribut-
ed. The parameter of the distribution (the
failure rate A) is given in the Parameter col-
umn, The other entries are made in a similar
manner. Table 13-6 explains the other formu-
la symbols and gives the parameter notations
to be used.

13-3.3.3 Additional Characteristics of the
System Definition Language

The preceding description of the system is
valid only for the computation of a variable
that can be calculated by purely combinatori-
al means, starting from the lowest level item
results and continuously passing these up to a
higher level until the top level (01) or system
answer is obtained. This procedure can be
used to calculate reliability without repair (R)
and/or availability in the absence of repair-
men and/or spares constraints (provided the
repair distribution for each item is given).

This procedure cannot be used to calcu-
late reliability with repair (RR) since RR for
SBSYS2 cannot be obtained from the values
of RR for items A-E by somehow combining
these results. (As a matter of fact, the RR’s
for A-E are equal to the R’s for these items.)
The reason for this is that Items A-E are
s-dependent for the purpose of calculating RR
for SBSYS2, although they are not s-depen-
dent for the purpose of calculating R. How-
ever, since SBSYS1 and SBSYS2 are con-
nected in series, it is permissible to calculate
RR for SBSYS1 and SBSYS2 separately and
then obtain RR for SYSTM by combining
these results in series, i.e., by multiplying
them.

Whenever items have to be handled as a
group due to their s-dependence, either be-
cause of the variable to be computed or
because they share spares and/or repairmen,
then the preceding description of the system
is not adequate, and a different one has to be
used. Also, if any part of the block diagram
contains iter.s that are connecwd in a manner
that cannot be expressed as combinations of
series-parallel groups, i.e., the upstate rules
cannot be given in terms of series-parallel
statements, then another means of describing
the configuration is required—even for the
purpose of calculating R.

—

AMCP 706-197

To permit system descriptions of a more
general nature and to provide the user with a
capability to impose repairmen and/or spares
constraints, the System Definition Language
of GEM introduces the concept of a section
(Ref. 4). A section is a group of items to
which the user can apply any of the six envi-
ronmental vectors.

Some elements of the System Definition
Language were not discussed before, because
they were not central to the basic concepts
employed in the description and to avoid con-
fusion. The additional elements of the System
Definition Language are:

1. Resultant Name

2. Formula Modification Code (MOD)

3. Variable Code.

The Resultant Name is the name chosen
by the user for either the answer for the varia-
ble of an item after it has been evaluated, or
the name that is chosen for use in an E Vec-
tor. All references to items in that E Vector
must use the Resultant Names and it is, there-
fore, important that these be unique within a
section unless items are identical.

The Formula Modification Code (MOD)
for Duplicate Items was introduced for future
capabilities in GEM which might evaluate a
variable for which one might want to ignore
the fact that there are duplicates of an item.

The Variable Code designates the type of
computation that will be used in evaluating
the variable—e.g., purely algebraic, a state cal-
culation involving differential equations, or
some combination of these. The code TE is a
generalized code which can be used to calcu-
late all variables provided the necessary condi-
tions are met.

The names of the combinatorial formulas
in the Formula Library and the notations
used for their associated parameters are pre-
sented in Table 13-7. This table presents the
names of the formulas associated with sec-
tions and the notation to be used for their
associated parameters. A GEM System Defini-
tion Coding Form is shown in Fig, 13-8 for
guidance regarding the columns to be used for
entering the information resulting from the
description of a system by the System Defini-
tion Language. The columns for the place-
ment of the command verbs to be described
also are shown.

13-19
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TABLE 13-7
FORMULAS ASSOCIATED WITH A SECTION*
FORMUL MEANING AND REQUIREMENTS PARAMETERS
Formuias also per-
mitted outside sec-
tions.

FENO These formulas refer to pieces of equipment

FGNO * with no repair or reptacement. Those with

FLNO * astericks after them cannot appear in a sec-

FTNO *® tion with repair or repiacement.

Formulas only per-
mitted within sec-
tions.

FERE Equipment with exponential failure and ex- RLAM Failure rate.
ponential repair. The repairman situation XMU Repair rate.
is described in the REPMEN E-vector.

FES! Equipment with exponential failure and
instantaneous replacement. The spares pools
are described in the SPARES E-vector.

FESE Equipment with exponential failure and ex- RLAM Failure rate.
ponential replacement. The repairman SLAM Replacement
situation is described in the REPMEN E- rate.
vector and the spares pools in the SPARES
E-vector.

SECT The first formula of a section. Its depen- None.
dence on its subsystems is described in its
UPSTATES E-vector.

S The formula of a group item within a sec- None.

tion. Its dependsiice on its subsystem and
pisces of equipment is described in its
UPSTATES E-vector.

13-20
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13-3.3.4 The Command Language

The System Definition Language gives the
user the ability to describe a problem. The
GEM Command Language is used to instruct
the computer to do a computation and to
modify the original problem.

The basic elements (vocabulary) of the
Command Language are:

1. Evaluation Verbs:

BEGIN
END
USE
NAMING
CALCULATE
2. Maodification Verbs:
DELETE
ADD
REPLACE
ALTER
VARY,

The two commands BEGIN and END are
used to initiate and stop, respectively, the
GEM program on the computer for the pur-
pose of making a “run” on the machine. A
run can consist of one or more problems.
Each problem starts with the USE card and
ends with the NAMING card. The NAMING
statement is followed by any name the user
wishes to give the computed answer to the
problem.

The CALCULATE statement requests the
calculation of a variable and is followed by
the name of the variable. For variables which
require the statement of a mission time, this
information is stated after the name of the
variable.

The verbs DELETE, ADD, REPLACE,
ALTER, and VARY are used to modify a
system description.

The command DELETE is used to drop a
certain portion of the system description. If
this command is applied to an 03 level item,
for instance, then this item and all its lower
Jevel items will be dropped from the system

description.
The command ADD will add to the sys-

tem description either something that imme-
diately follows the ADD command or a sys-
tem (or portion thereof) which has been pre-
viously described or appears in the Systems
Library.

13-22

The REPLACE command is a combina-
tion of the DELETE and ADD commands.

The ALTER command is used to change
any one of the entries for an individual item,
such as its parameters, name, resultant name,
or level. Only the item specified is affected by
the ALTER; its lower level items remain the
same.

The VARY command is perhaps the most
important one, because it gives the user the
ability to make sensitivity analyses. It does
this by allowing the user to vary the values of
one or more parameters of items in the sys-
tem description and see the effects of this on
the value of the overall system answer. Thus,
one can determine the sensitivity of the sys-
tem Reliability with Repair to the failure rate
and/or repair rate of an individual item or
group of items appearing anywhere in the
system description. The procedure followed
in GEM is to compute the system answer for
the requested variable for every value of the
parameter specified in the VARY. Ref. 4 gives
more specific examples of using GEM for a
sample system; it includes block diagrams,
GEM input, and GEM output.

13-4 OTHER PROGRAMS

Other computer programs for calculating
various aspects of reliability are listed in Part
Two, Design for Reliability, par. 4-5. In addi-
tion, most computer installations have statisti-
cal packages for performing routine estima-
tions, and simulation languages for perform-
ing Monte Carlo simulation. Few people can
know all about all available programs. Special-
ists can assist in selecting a few from the avail-
able many, then help an engineer become
familiar with those few. Ii is better to be able
to use handily a fairly good program than to
have only a remote knowledge of several
excellent programs.
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INDEX

A

Active redundancy,
See: Redundancy

Availability, 6-20

B
Bad-as-old, 7-1
Bayes theorem (rule), 2-5
s-Bias, 4-1

Binomial distribution, 2-10
Block diagrams, 6-32
engineering, 6-2
functional, 6-2
reliability, 6-21, 6-24, 6-29, 13-1

Cause-consequence chart,
See: Block diagram
Central moment,
See: Moments
Chi-square distribution, 3-4
Coding redundancy,
See: Redundancy
Common-cause failure (event),
See: Common-mode event
Common-mode event, 2-6
Computer programs (system reliability), 13-1
GEM (Generai Effectiveness Methodology),
13-9
MARSEP (Mathematica’s Automated Reli-
ability and Safety Evaluation Pro-
gram), 13-1
other, 13-20
s-Confidence, 4-2
s-Consistency, 4-1
Constrained optimization,
See: Optimization
Convexity (optimization), 12-9
Convolution, 3-3
Correlation coefficient,
See: Linear-correlation coefficient
Covariance, 3-6

Decision redundancy,

See: Redundancy
Decreasing failure rate (DFR), 4-3
s-Dependent failures, 9-7
Distributions

continuous variables, 3-3

discrete variables, 2-10

for specific distributions,

See: the name of the distribution

Dynamic programming (optimization), 12-18

s-Efficiency, 4-1
Erlang distribution, 3-4
Estimation of parameters, 4-2
Estimators (properties of),
See: s-Efficiency, s-Consistency, s-Bias
Event, 2.1, 3-1
Exponential distribution, 3-4, 9-1

Failure rate, 3-4, 3-5
Fault tree,

See: Block diagram
Feasible directions method (optimization),

12.15

Zoutendijk procedure, 12-15

Rosen’s procedure, 12-17
Fourier transform,

See: Laplace transform
Functional block diagram,

See: Block diagram

G

Gamma distribution, 3-4
Good-as-new, 7-1
Goodness-of-fit, 4-3, 3-8
Gradient methods
optimization, 12-2
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interpolation, 12-2
steepest descent, 12-2

second order optimization, 12-4
conjugate directions, 12-5
Fletcher-Powell, 12-5

Increasing failure rate (IFR), 4-3
s-Independence, 1-1, 2-5, 3-3
conditional, 2-5, 3-3

K
k-out-of-n
F-redundancy,
See: Redundancy
G-redundancy,

See: Redundancy systems,
See: Redundancy
Kuhn-Tucker conditions {optimization),
12-11

Laplace-Stieltjes transform,
See: Laplace transform

Laplace transforms, 5-1

Linear-correlation coefficient, 3-5

Linear pregramming, 12-1
See also: Optimization

Lognormal distribution, 3-4

Luus-Jaakola method (optimization), 12-19,
A-l

Maintenance,

See: Repair
Majority logic,

See: Redundancy
Markov

chains, 5-1

processes, 5-1

1-2

Maximization,
See: Optimization
Mean square error, 4-1
Mean time between failures (MTBF), 6-21
Mean time to failure (MTF), 6-20
Minimization,
See: Optimization
Models,
See: Block diagrams
Moments, 2-11, 3-3
Monte Carlo simulation, 11-1
Moore-Shannon redundancy,
See: Redundancy
Multiple-line redundancy,
See: Redundancy

Nondecision redundancy,
See: Redundancy
s-Normal distribution, 3-4, 9-3

o

Optimization, 12-1
constrained, 12-6
Luus-Jaakola method, 12-19, A-1
unconstrained, 12-2
See also: Specific techniques

Parallel redundancy,
See: Redundancy (k-out-of-n)
Parameter estimation,
See: Estimation of parameters
Penalty function method (optimization),
12-17
Fiacco-McCormick, 12-18
Poisson distribution, 2-10
Populations, 4-3
Probability
concepts,
See: s-Independence, Distributions,
Moments
definitions, 2-1, 2-2, 2-4, 3-1, 3-2
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foundations
continuous variables, 2-1
discrete variables, 3-1
theory
continuous variables, 3-1
discrete variables, 2-1
See also: Distributions

Random numbers, 11-3
Random sample, 4-3
Random variables, 2-10
Redundancy, 7-1, 8-1, 9-1, 10-1, 7-3,
See also: Repair
active, 9-12, 10-16
coding, 10-19
decision, 10-7
k-out-of-n, 7-4, 8-1
k-out-of-n:F, 6-21, 7-4, 8-1
k-out-of-n:G, 6-21, 7-4, 8-1
majority logic,

See: Voting
Moore-Shannon, 10-2
multiple line, 10-11
nondecision, 10-2
parallel,

See: k-out-of-n
standby, 9-9, 9-12,10-15
switching, 7-4, 10-15
voting, 7-4, 8-5 10-7

Regeneration pomts, 5-2
Reliability
block diagram,

See: Block diagram
measures, 9-2
model,

See: Block diagram
prediction, 8-1, 9-1, 10-1, 13-1

time-dependent, 9-1

time-dependent, 8-1

Repair, 7-1, 7-5, 912, 6.1, 6-29,
See also: Redundancy
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Sample,

See: Random sample

point, 2-1, 3-1

space, 2-1, 3-1
s-Significance, 4-2
Simulation,

See: Monte Carlo simulation
Spares,

See: Repair
Standby redundancy,

See: Redundancy
Statistical theory, 4-1
Switching,

See: Redundancy
Switching redundancy,

See: Redundancy
System

analysis, 6-2

reliability model, 6-1, 6-3

state, 5-1

Transformation of variables, 3-3, 3-5
Unconstrained optimization,

See: Optimization
Uniform distribution, 3-4

\Y

Variance, 3-5
See also: Moments
Venr diagrams, 3-2
Voting redundancy,
See: Redundancy

w

Weibull distribution, 3-4
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